Enhanced performance in perovskites films by defect engineering and charge carrier transportation via pulsed laser doping of 2D MoS2
Tài liệu tham khảo
Ma, 2017, The nature of electron mobility in hybrid perovskite CH3NH3PbI3, Nano Lett., 17, 3646, 10.1021/acs.nanolett.7b00832
Stranks, 2013, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber, Science, 342, 341, 10.1126/science.1243982
Zhang, 2017, Perovskite CH3NH3PbI3-xBrx single crystals with charge-carrier lifetimes exceeding 260 mu s, ACS Appl. Mater. Interfaces, 9, 14827, 10.1021/acsami.7b01696
Tian, 2017, Hybrid organic-inorganic perovskite photodetectors, Small, 13, 1702107, 10.1002/smll.201702107
Liang, 2022, High-performance flexible perovskite photodetectors based on single-crystal-like two-dimensional Ruddlesden-popper thin films, Carbon Energ., 5, 10.1002/cey2.251
Liang, 2021, Doping Electron transporting layer: an effective method to enhance J(SC) of all-inorganic perovskite solar cells, Energ. & Environ. Mater., 4, 500, 10.1002/eem2.12228
Zheng, 2017, Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations, Nat. Energy, 2, 17102, 10.1038/nenergy.2017.102
Tang, 2022, 2D non-layered In2S3 as multifunctional additive for inverted organic-free perovskite solar cells with enhanced performance, Solar Rrl., 6, 2101013, 10.1002/solr.202101013
Lee, 2016, Lewis acid-base adduct approach for high efficiency perovskite solar cells, Acc. Chem. Res., 49, 311, 10.1021/acs.accounts.5b00440
Wang, 2020, Lewis acid/base approach for efficacious defect passivation in perovskite solar cells, J. Mater. Chem. A, 8, 12201, 10.1039/D0TA03957H
Zhang, 2020, Additive engineering for efficient and stable perovskite solar cells, Adv. Energy Mater., 10, 1902579, 10.1002/aenm.201902579
Xia, 2023, Surface passivation toward efficient and stable perovskite solar cells, Energ. & Environ. Mater., 6, 10.1002/eem2.12296
Liu, 2017, Black phosphorus quantum dots used for boosting light harvesting in organic photovoltaics, Angewandte Chemie-Int. Edit., 56, 13717, 10.1002/anie.201707510
Qin, 2021, Incorporation of two-dimensional WSe2 into MAPbI3 perovskite for efficient and stable photovoltaics, J. Phys. Chem. Lett., 12, 6883, 10.1021/acs.jpclett.1c02012
Wang, 2021, 2D WSe2 flakes for synergistic modulation of grain growth and charge transfer in tin-based perovskite solar cells, Adv. Sci., 8, 2004315, 10.1002/advs.202004315
Liu, 2020, CH3NH3PbI3:MoS2 heterostructure for stable and efficient inverted perovskite solar cell, Sol. Energy, 195, 436, 10.1016/j.solener.2019.11.030
Najafi, 2018, MoS2 quantum dot/graphene hybrids for advanced interface engineering of a CH3NH3PbI3 perovskite solar cell with an efficiency of over 20%, ACS Nano, 12, 10736, 10.1021/acsnano.8b05514
Ning, 2015, Quantum-dot-in-perovskite solids, Nature, 523, 324, 10.1038/nature14563
Lee, 2014, Atomically thin p-n junctions with van der waals heterointerfaces, Nat. Nanotechnol., 9, 676, 10.1038/nnano.2014.150
Almosni, 2016, Correlations between electrical and optical properties in lattice-matched GaAsPN/GaP solar cells, Sol. Energy Mater. Sol. Cells, 147, 53, 10.1016/j.solmat.2015.11.036
Grigorev, 2018, Laser processing of transparent semiconductor materials
Song, 2020, Addressing the reliability and electron transport kinetics in halide perovskite film via pulsed laser engineering, Adv. Funct. Mater., 30, 1906781, 10.1002/adfm.201906781
Song, 2020, Quantum dot enabled perovskite thin film with enhanced crystallization, stability, and carrier diffusion via pulsed laser nanoengineering, Adv. Mater. Interfaces, 7, 2001021, 10.1002/admi.202001021
Yang, 2021, Ultrafast transformation of PbI2 in two-step fabrication of halide perovskite films for long-term performance and stability via nanosecond laser shock annealing, J. Mater. Chem. C, 9, 12819, 10.1039/D1TC02475B
Lei, 2013, Electronic structure and optical properties of monolayer MoS2, Rare Metal Mater. Eng., 42, 2477
Subhani, 2019, Interface-modification-induced gradient energy band for highly efficient CsPbIBr2 perovskite solar cells, Adv. Energy Mater., 9, 1803785, 10.1002/aenm.201803785
Sahoo, 2013, Temperature-dependent raman studies and thermal conductivity of few-layer MoS2, J. Phys. Chem. C, 117, 9042, 10.1021/jp402509w
Ameena Nazneen, 2020, Structural, morphological, optical, and photocatalytic properties of Ag-doped MoS2 nanoparticles, J. Mol. Struct., 1220
Huang, 2019, A-site cation engineering for highly efficient MAPbI(3) single-crystal X-ray detector, Angewandte Chemie-Int. Edit., 58, 17834, 10.1002/anie.201911281
Wu, 2020, Highly efficient perovskite solar cells enabled by multiple ligand passivation, Adv. Energy Mater., 10, 1903696, 10.1002/aenm.201903696
Shao, 2016, Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells, Nat. Energy, 1, 15001, 10.1038/nenergy.2015.1
Byranvand, 2018, P-type CuI islands on TiO2 electron transport layer for a highly efficient planar-perovskite solar cell with negligible hysteresis, Adv. Energy Mater., 8, 1702235, 10.1002/aenm.201702235
Saidaminov, 2015, Planar-integrated single-crystalline perovskite photodetectors. Nature, Communications, 6, 8724
Klotz, 2019, Detecting and identifying reversible changes in perovskite solar cells by electrochemical impedance spectroscopy, RSC Adv., 9, 33436, 10.1039/C9RA07048F
Kumar, 2019, Laser shock tuning dynamic interlayer coupling in graphene-boron nitride moire superlattices, Nano Lett., 19, 283, 10.1021/acs.nanolett.8b03895
Wang, 2022, Lansoprazole, a cure-four, enables perovskite solar cells efficiency exceeding 24%, Chem. Eng. J., 446
Zhou, 2022, 2-CF3-PEAI to eliminate Pb0 traps and form a 2D perovskite layer to enhance the performance and stability of perovskite solar cells, Nano Energy, 95, 10.1016/j.nanoen.2022.107036
Kapil, 2019, Strain relaxation and light management in tin-lead perovskite solar cells to achieve high efficiencies, Acs Energ. Lett., 4, 1991, 10.1021/acsenergylett.9b01237
Cai, 2021, Multifunctional enhancement for highly stable and efficient perovskite solar cells, Adv. Funct. Mater., 31, 2005776, 10.1002/adfm.202005776
Ghasemi, 2016, Sequential solvent exchange method for controlled exfoliation of MoS2 suitable for phototransistor fabrication, ACS Appl. Mater. Interfaces, 8, 31179, 10.1021/acsami.6b07211
Lei, 2013, Electronic structure and optical properties of monolayer MoS2, Rare Metal Mater. Eng., 42, 2477
Nie, 2017, Ultrafast growth of large-area monolayer MoS2. Film via gold foil assistant CVD for a. highly. Sensitive photodetector, Nanotechnology, 28, 10.1088/1361-6528/aa7473
Yuan, 2022, Double-side healing at CsPbI2Br/ZnO interface by bipyrimidine hydroiodide enables inverted solar cells with enhanced efficiency and stability, Chem. Eng. J., 435, 10.1016/j.cej.2022.134760
Zhou, 2020, Interfacial strain release from the WS2/CsPbBr3 van der Waals heterostructure for 1.7 V voltage all-inorganic perovskite solar cells, Angew. Chem., 132, 22181, 10.1002/ange.202010252
Yu, 2021, Effective Lewis base additive with S-donor for efficient and stable CsPbI2Br based perovskite solar cells, Chem. Eng. J., 420, 10.1016/j.cej.2021.129931
Wu, 2019, Efficient defect passivation for perovskite solar cells by controlling the Electron density distribution of donor-π-acceptor molecules, Adv. Energy Mater., 9, 1803766, 10.1002/aenm.201803766
Zhao, 2019, 20% efficient perovskite solar cells with 2D Electron transporting layer, Adv. Funct. Mater., 29, 1805168, 10.1002/adfm.201805168
Chen, 2021, Two-dimensional Bi2OS2 doping improves the performance and stability of perovskite solar cells, Chem. Eng. J., 420, 10.1016/j.cej.2020.127700
Li, 2022, Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells, Science., 375, 434, 10.1126/science.abl5676
Noel, 2014, Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic–inorganic lead Halide Perovskites, ACS Nano, 8, 9815, 10.1021/nn5036476
Zhang, 2021, Multifunctional dopamine-assisted preparation of efficient and stable perovskite solar cells, J. Energ. Chem., 54, 291, 10.1016/j.jechem.2020.05.061
