Enhanced performance in perovskites films by defect engineering and charge carrier transportation via pulsed laser doping of 2D MoS2

Sustainable Materials and Technologies - Tập 36 - Trang e00622 - 2023
Dingyue Sun1, Jun Yuan1, Taijin Wang1, Ming Peng1, Shizhuo Zhang1, Senlin Rao1, Feng Liu1,2, Gary J. Cheng1,3
1The Institute of Technological Sciences, Wuhan University, Wuhan, 430072, PR China
2School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei 430072, China
3School of Industrial Engineering, Purdue University, West Lafayette, IN 47906 USA

Tài liệu tham khảo

Ma, 2017, The nature of electron mobility in hybrid perovskite CH3NH3PbI3, Nano Lett., 17, 3646, 10.1021/acs.nanolett.7b00832 Stranks, 2013, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber, Science, 342, 341, 10.1126/science.1243982 Zhang, 2017, Perovskite CH3NH3PbI3-xBrx single crystals with charge-carrier lifetimes exceeding 260 mu s, ACS Appl. Mater. Interfaces, 9, 14827, 10.1021/acsami.7b01696 Tian, 2017, Hybrid organic-inorganic perovskite photodetectors, Small, 13, 1702107, 10.1002/smll.201702107 Liang, 2022, High-performance flexible perovskite photodetectors based on single-crystal-like two-dimensional Ruddlesden-popper thin films, Carbon Energ., 5, 10.1002/cey2.251 Liang, 2021, Doping Electron transporting layer: an effective method to enhance J(SC) of all-inorganic perovskite solar cells, Energ. & Environ. Mater., 4, 500, 10.1002/eem2.12228 Zheng, 2017, Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations, Nat. Energy, 2, 17102, 10.1038/nenergy.2017.102 Tang, 2022, 2D non-layered In2S3 as multifunctional additive for inverted organic-free perovskite solar cells with enhanced performance, Solar Rrl., 6, 2101013, 10.1002/solr.202101013 Lee, 2016, Lewis acid-base adduct approach for high efficiency perovskite solar cells, Acc. Chem. Res., 49, 311, 10.1021/acs.accounts.5b00440 Wang, 2020, Lewis acid/base approach for efficacious defect passivation in perovskite solar cells, J. Mater. Chem. A, 8, 12201, 10.1039/D0TA03957H Zhang, 2020, Additive engineering for efficient and stable perovskite solar cells, Adv. Energy Mater., 10, 1902579, 10.1002/aenm.201902579 Xia, 2023, Surface passivation toward efficient and stable perovskite solar cells, Energ. & Environ. Mater., 6, 10.1002/eem2.12296 Liu, 2017, Black phosphorus quantum dots used for boosting light harvesting in organic photovoltaics, Angewandte Chemie-Int. Edit., 56, 13717, 10.1002/anie.201707510 Qin, 2021, Incorporation of two-dimensional WSe2 into MAPbI3 perovskite for efficient and stable photovoltaics, J. Phys. Chem. Lett., 12, 6883, 10.1021/acs.jpclett.1c02012 Wang, 2021, 2D WSe2 flakes for synergistic modulation of grain growth and charge transfer in tin-based perovskite solar cells, Adv. Sci., 8, 2004315, 10.1002/advs.202004315 Liu, 2020, CH3NH3PbI3:MoS2 heterostructure for stable and efficient inverted perovskite solar cell, Sol. Energy, 195, 436, 10.1016/j.solener.2019.11.030 Najafi, 2018, MoS2 quantum dot/graphene hybrids for advanced interface engineering of a CH3NH3PbI3 perovskite solar cell with an efficiency of over 20%, ACS Nano, 12, 10736, 10.1021/acsnano.8b05514 Ning, 2015, Quantum-dot-in-perovskite solids, Nature, 523, 324, 10.1038/nature14563 Lee, 2014, Atomically thin p-n junctions with van der waals heterointerfaces, Nat. Nanotechnol., 9, 676, 10.1038/nnano.2014.150 Almosni, 2016, Correlations between electrical and optical properties in lattice-matched GaAsPN/GaP solar cells, Sol. Energy Mater. Sol. Cells, 147, 53, 10.1016/j.solmat.2015.11.036 Grigorev, 2018, Laser processing of transparent semiconductor materials Song, 2020, Addressing the reliability and electron transport kinetics in halide perovskite film via pulsed laser engineering, Adv. Funct. Mater., 30, 1906781, 10.1002/adfm.201906781 Song, 2020, Quantum dot enabled perovskite thin film with enhanced crystallization, stability, and carrier diffusion via pulsed laser nanoengineering, Adv. Mater. Interfaces, 7, 2001021, 10.1002/admi.202001021 Yang, 2021, Ultrafast transformation of PbI2 in two-step fabrication of halide perovskite films for long-term performance and stability via nanosecond laser shock annealing, J. Mater. Chem. C, 9, 12819, 10.1039/D1TC02475B Lei, 2013, Electronic structure and optical properties of monolayer MoS2, Rare Metal Mater. Eng., 42, 2477 Subhani, 2019, Interface-modification-induced gradient energy band for highly efficient CsPbIBr2 perovskite solar cells, Adv. Energy Mater., 9, 1803785, 10.1002/aenm.201803785 Sahoo, 2013, Temperature-dependent raman studies and thermal conductivity of few-layer MoS2, J. Phys. Chem. C, 117, 9042, 10.1021/jp402509w Ameena Nazneen, 2020, Structural, morphological, optical, and photocatalytic properties of Ag-doped MoS2 nanoparticles, J. Mol. Struct., 1220 Huang, 2019, A-site cation engineering for highly efficient MAPbI(3) single-crystal X-ray detector, Angewandte Chemie-Int. Edit., 58, 17834, 10.1002/anie.201911281 Wu, 2020, Highly efficient perovskite solar cells enabled by multiple ligand passivation, Adv. Energy Mater., 10, 1903696, 10.1002/aenm.201903696 Shao, 2016, Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells, Nat. Energy, 1, 15001, 10.1038/nenergy.2015.1 Byranvand, 2018, P-type CuI islands on TiO2 electron transport layer for a highly efficient planar-perovskite solar cell with negligible hysteresis, Adv. Energy Mater., 8, 1702235, 10.1002/aenm.201702235 Saidaminov, 2015, Planar-integrated single-crystalline perovskite photodetectors. Nature, Communications, 6, 8724 Klotz, 2019, Detecting and identifying reversible changes in perovskite solar cells by electrochemical impedance spectroscopy, RSC Adv., 9, 33436, 10.1039/C9RA07048F Kumar, 2019, Laser shock tuning dynamic interlayer coupling in graphene-boron nitride moire superlattices, Nano Lett., 19, 283, 10.1021/acs.nanolett.8b03895 Wang, 2022, Lansoprazole, a cure-four, enables perovskite solar cells efficiency exceeding 24%, Chem. Eng. J., 446 Zhou, 2022, 2-CF3-PEAI to eliminate Pb0 traps and form a 2D perovskite layer to enhance the performance and stability of perovskite solar cells, Nano Energy, 95, 10.1016/j.nanoen.2022.107036 Kapil, 2019, Strain relaxation and light management in tin-lead perovskite solar cells to achieve high efficiencies, Acs Energ. Lett., 4, 1991, 10.1021/acsenergylett.9b01237 Cai, 2021, Multifunctional enhancement for highly stable and efficient perovskite solar cells, Adv. Funct. Mater., 31, 2005776, 10.1002/adfm.202005776 Ghasemi, 2016, Sequential solvent exchange method for controlled exfoliation of MoS2 suitable for phototransistor fabrication, ACS Appl. Mater. Interfaces, 8, 31179, 10.1021/acsami.6b07211 Lei, 2013, Electronic structure and optical properties of monolayer MoS2, Rare Metal Mater. Eng., 42, 2477 Nie, 2017, Ultrafast growth of large-area monolayer MoS2. Film via gold foil assistant CVD for a. highly. Sensitive photodetector, Nanotechnology, 28, 10.1088/1361-6528/aa7473 Yuan, 2022, Double-side healing at CsPbI2Br/ZnO interface by bipyrimidine hydroiodide enables inverted solar cells with enhanced efficiency and stability, Chem. Eng. J., 435, 10.1016/j.cej.2022.134760 Zhou, 2020, Interfacial strain release from the WS2/CsPbBr3 van der Waals heterostructure for 1.7 V voltage all-inorganic perovskite solar cells, Angew. Chem., 132, 22181, 10.1002/ange.202010252 Yu, 2021, Effective Lewis base additive with S-donor for efficient and stable CsPbI2Br based perovskite solar cells, Chem. Eng. J., 420, 10.1016/j.cej.2021.129931 Wu, 2019, Efficient defect passivation for perovskite solar cells by controlling the Electron density distribution of donor-π-acceptor molecules, Adv. Energy Mater., 9, 1803766, 10.1002/aenm.201803766 Zhao, 2019, 20% efficient perovskite solar cells with 2D Electron transporting layer, Adv. Funct. Mater., 29, 1805168, 10.1002/adfm.201805168 Chen, 2021, Two-dimensional Bi2OS2 doping improves the performance and stability of perovskite solar cells, Chem. Eng. J., 420, 10.1016/j.cej.2020.127700 Li, 2022, Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells, Science., 375, 434, 10.1126/science.abl5676 Noel, 2014, Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic–inorganic lead Halide Perovskites, ACS Nano, 8, 9815, 10.1021/nn5036476 Zhang, 2021, Multifunctional dopamine-assisted preparation of efficient and stable perovskite solar cells, J. Energ. Chem., 54, 291, 10.1016/j.jechem.2020.05.061