Enhanced mechanical and thermal properties while maintaining transparency of epoxy resin film by introducing shear-oriented cellulose nanocrystals

Progress in Organic Coatings - Tập 182 - Trang 107683 - 2023
Luyao Feng1, Miao Zhang1, Yiwen Hua1, Peng Zhu1, Yanjun Tang1
1College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China

Tài liệu tham khảo

Yue, 2019, High performance biobased epoxy nanocomposite reinforced with a bacterial cellulose nanofiber network, ACS Sustain. Chem. Eng., 7, 5986, 10.1021/acssuschemeng.8b06073 Haney, 2022, Surface-functionalized cellulose nanocrystals as nanofillers for crosslinking processes: implications for thermosetting resins, ACS Appl. Nano. Mater., 5, 1891, 10.1021/acsanm.1c03508 He, 2018, Reinforced carbon fiber laminates with oriented carbon nanotube epoxy nanocomposites: magnetic field assisted alignment and cryogenic temperature mechanical properties, J. Colloid Interface Sci., 517, 40, 10.1016/j.jcis.2018.01.087 Lionetto, 2014, A methodology to orient carbon nanotubes in a thermosetting matrix, Compos. Sci. Technol., 96, 47, 10.1016/j.compscitech.2014.02.016 Mei, 2016, Dramatic increase in electrical conductivity in epoxy composites with uni-directionally oriented laminae of carbon nanotubes, Chem. Eng. J., 304, 970, 10.1016/j.cej.2016.07.025 Yakovenko, 2014, Development of carbon nanotube-polymer composites with oriented distribution of MWCNTs induced by electric field, Phys. Status Solidi A, 211, 2718, 10.1002/pssa.201431394 Dai, 2012, Comparative study on electrical properties of orientated carbon nanotubes/epoxy composites, J. Appl. Polym. Sci., 124, 647, 10.1002/app.35025 Wang, 2020, Highly orientated graphene/epoxy coating with exceptional anti-corrosion performance for harsh oxygen environments, Corros. Sci., 176, 10.1016/j.corsci.2020.109049 Wu, 2022, UV-activated frontal polymerization for preparation of magnetically oriented graphene nanoplatelets/epoxy composites, Mater. Lett., 321, 10.1016/j.matlet.2022.132370 Cho, 2011, Epoxy resin-based nanocomposite films with highly oriented BN nanosheets prepared using a nanosecond-pulse electric field, Mater. Lett., 65, 2426, 10.1016/j.matlet.2011.05.005 Min, 2016, Greatly enhanced microwave absorption properties of highly oriented flake carbonyl iron/epoxy resin composites under applied magnetic field, J. Mater. Sci., 52, 2373, 10.1007/s10853-016-0532-1 Nissilä, 2019, A method for preparing epoxy-cellulose nanofiber composites with an oriented structure, Compos. Part A Appl. Sci., 125, 10.1016/j.compositesa.2019.105515 Lizundia, 2020, Cellulose nanocrystal based multifunctional nanohybrids, Prog. Mater. Sci., 112, 10.1016/j.pmatsci.2020.100668 Shi, 2021, Surface modification of cellulose nanocrystals towards new materials development, J. Appl. Polym. Sci., 138, 51555, 10.1002/app.51555 Vanderfleet, 2020, Production routes to tailor the performance of cellulose nanocrystals, Nat. Rev. Mater., 6, 124, 10.1038/s41578-020-00239-y Wang, 2019, Preparation of nanocellulose and its potential in reinforced composites: a review, J. Biomater. Sci. Polym. Ed., 30, 919, 10.1080/09205063.2019.1612726 Abraham, 2016, Highly modified cellulose nanocrystals and formation of epoxy-nanocrystalline cellulose (CNC) nanocomposites, ACS Appl. Mater. Interfaces, 8, 28086, 10.1021/acsami.6b09852 Trinh, 2018, Hydrophobic esterification of cellulose nanocrystals for epoxy reinforcement, Polymer., 155, 64, 10.1016/j.polymer.2018.08.076 Verker, 2014, Insertion of nano-crystalline cellulose into epoxy resin via resilin to construct a novel elastic adhesive, Cellulose., 21, 4369, 10.1007/s10570-014-0460-7 Peng, 2014, Design and characterization of cellulose nanocrystal-enhanced epoxy hardeners, Green Mater., 2, 193, 10.1680/gmat.14.00015 Tang, 2010, Cellulose whisker/epoxy resin nanocomposites, ACS Appl. Mater. Interfaces, 2, 1073, 10.1021/am900830h Yue, 2018, Surface-modified cellulose nanocrystals for biobased epoxy nanocomposites, Polymer., 134, 155, 10.1016/j.polymer.2017.11.051 Shin, 2017, Dynamic mechanical and thermal properties of cellulose nanocrystal/epoxy nanocomposites, Green Mater., 1 Qin, 2021, Toughness improvement of epoxy thermosets with cellulose nanocrystals, Polym. Int., 70, 1640, 10.1002/pi.6260 Xu, 2013, Mechanical and thermal properties of waterborne epoxy composites containing cellulose nanocrystals, Polymer., 54, 6589, 10.1016/j.polymer.2013.10.011 Qiu, 2021, Effect of processing techniques and residual solvent on the thermal/mechanical properties of epoxy-cellulose nanocrystal nanocomposites, Polym. Eng. Sci., 61, 1281, 10.1002/pen.25685 Li, 2020, Synergistic improvement for mechanical, thermal and optical properties of PVA-co-PE nanofiber/epoxy composites with cellulose nanocrystals, Compos. Sci. Technol., 188, 10.1016/j.compscitech.2020.107990 Mashkour, 2019, Printing birefringent figures by surface tension-directed self-assembly of a cellulose nanocrystal/polymer ink components, ACS Appl. Mater. Interfaces, 11, 1538, 10.1021/acsami.8b14899 Babaei-Ghazvini, 2020, Effect of magnetic field alignment of cellulose nanocrystals in starch nanocomposites: physicochemical and mechanical properties, Carbohydr. Polym., 247, 10.1016/j.carbpol.2020.116688 Csoka, 2011, Dielectrophoresis of cellulose nanocrystals and alignment in ultrathin films by electric field-assisted shear assembly, J. Colloid Interface Sci., 363, 206, 10.1016/j.jcis.2011.07.045 Gan, 2019, Assembly-induced emission of cellulose nanocrystals for hiding information, Part. Part. Syst. Charact., 36, 1800412, 10.1002/ppsc.201800412 Yang, 2021, 3D hollow xerogels with ordered cellulose nanocrystals for tailored mechanical properties, Small., 17, 2104702, 10.1002/smll.202104702 Jinkins, 2021, Confined shear alignment of ultrathin films of cellulose nanocrystals, ACS Appl. Bio. Mater., 4, 7961, 10.1021/acsabm.1c00884 Chowdhury, 2017, Improved order parameter (alignment) determination in cellulose nanocrystal (CNC) films by a simple optical birefringence method, Cellulose., 24, 1957, 10.1007/s10570-017-1250-9 Sanchez-Botero, 2018, In situ and real-time studies, via synchrotron x-ray scattering, of the orientational order of cellulose nanocrystals during solution shearing, Langmuir., 34, 5263, 10.1021/acs.langmuir.7b04403 Kim, 2021, Structural orientation effect of cellulose nanocrystals (CNC) films on electrochemical kinetics and stability in lithium-ion batteries, Chem. Eng. J., 417, 10.1016/j.cej.2020.128128 Hoeger, 2011, Ultrathin film coatings of aligned cellulose nanocrystals from a convective-shear assembly system and their surface mechanical properties, Soft Matter, 7, 1957, 10.1039/c0sm01113d Wang, 2021, Shear-aligned tunicate-cellulose-nanocrystal-reinforced hydrogels with mechano-thermo-chromic properties, J. Mater. Chem., 9, 6344 Segal, 1959, An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer, Text. Res. J., 29, 786, 10.1177/004051755902901003 Revol, 1987, Effect of mercerization on the crystallite size and crystallinity index in cellulose from different sources, Can. J. Chem., 65, 1724, 10.1139/v87-288 Zhu, 2017, Preparation of double-coated TiO2 nanoparticles using an anchoring grafting method and investigation of the UV resistance of its reinforced PEI film, Prog. Org. Coat., 104, 81, 10.1016/j.porgcoat.2016.12.009 Yang, 2013, Tough nanocomposite hydrogels from cellulose nanocrystals/poly(acrylamide) clusters: influence of the charge density, aspect ratio and surface coating with PEG, Cellulose., 21, 541, 10.1007/s10570-013-0111-4 Fattahi Meyabadi, 2014, Spherical cellulose nanoparticles preparation from waste cotton using a green method, Powder Technol., 261, 232, 10.1016/j.powtec.2014.04.039 Lam, 2017, Effect of varying hydrolysis time on extraction of spherical bacterial cellulose nanocrystals as a reinforcing agent for poly(vinyl alcohol) composites, J. Polym. Res., 24, 71, 10.1007/s10965-017-1232-5 Zianor Azrina, 2017, Spherical nanocrystalline cellulose (NCC) from oil palm empty fruit bunch pulp via ultrasound assisted hydrolysis, Carbohydr. Polym., 162, 115, 10.1016/j.carbpol.2017.01.035 Dong, 2021, Pickering emulsions stabilized by spherical cellulose nanocrystals, Carbohydr. Polym., 265, 10.1016/j.carbpol.2021.118101 Oh, 2005, Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy, Carbohydr. Res., 340, 2376, 10.1016/j.carres.2005.08.007 Purkait, 2011, Isolation of cellulose nanoparticles from sesame husk, Ind. Eng. Chem. Res., 50, 871, 10.1021/ie101797d Ayouch, 2021, Ultrasonic-mediated production of carboxylated cellulose nanospheres, J. Environ. Chem. Eng., 9, 10.1016/j.jece.2021.106302 Lu, 2010, Preparation and properties of cellulose nanocrystals: rods, spheres, and network, Carbohydr. Polym., 82, 329, 10.1016/j.carbpol.2010.04.073 Schwanninger, 2004, Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose, Vib. Spectrosc., 36, 23, 10.1016/j.vibspec.2004.02.003 Guo, 2016, Effects of ultrasonic treatment during acid hydrolysis on the yield, particle size and structure of cellulose nanocrystals, Carbohydr. Polym., 135, 248, 10.1016/j.carbpol.2015.08.068 Ren, 2022, Preparation and separation of pure spherical cellulose nanocrystals from microcrystalline cellulose by complex enzymatic hydrolysis, Int. J. Biol. Macromol., 202, 1, 10.1016/j.ijbiomac.2022.01.009 Chen, 2022, The simultaneous production of two distinct types of cellulose nanocrystals, Langmuir., 38, 5996, 10.1021/acs.langmuir.2c00151 Lei, 2018, Cellulose nanocrystals obtained from office waste paper and their potential application in PET packing materials, Carbohydr. Polym., 181, 376, 10.1016/j.carbpol.2017.10.059 Yin, 2018, Cellulose nanocrystals functionalized with amino-silane and epoxy-poly(ethylene glycol) for reinforcement and flexibilization of poly(lactic acid): material preparation and compatibility mechanism, Cellulose., 25, 6447, 10.1007/s10570-018-2033-7 Yin, 2017, Cellulose nanocrystals modified with quaternary ammonium salts and its reinforcement of polystyrene, Polym. Bull., 75, 2151, 10.1007/s00289-017-2131-y Aranguren, 2013, Effect of the nano-cellulose content on the properties of reinforced polyurethanes. A study using mechanical tests and positron anihilation spectroscopy, Polym. Test., 32, 115, 10.1016/j.polymertesting.2012.08.014 Emami, 2015, Use of surfactants in cellulose nanowhisker/epoxy nanocomposites: effect on filler dispersion and system properties, Cellulose., 22, 3161, 10.1007/s10570-015-0728-6 Chirayil, 2014, Rheological behaviour of nanocellulose reinforced unsaturated polyester nanocomposites, Int. J. Biol. Macromol., 69, 274, 10.1016/j.ijbiomac.2014.05.055 Liu, 2011, Structure and rheology of nanocrystalline cellulose, Carbohydr. Polym., 84, 316, 10.1016/j.carbpol.2010.11.039 Shafiei-Sabet, 2014, Ionic strength effects on the microstructure and shear rheology of cellulose nanocrystal suspensions, Cellulose., 21, 3347, 10.1007/s10570-014-0407-z Shafeiei-Sabet, 2013, Influence of degree of sulfation on the rheology of cellulose nanocrystal suspensions, Rheol. Acta, 52, 741, 10.1007/s00397-013-0722-6 Ureña-Benavides, 2013, Dispersion and rheology of multiwalled carbon nanotubes in unsaturated polyester resin, Macromolecules., 46, 1642, 10.1021/ma3017844 Lopez, 2016, Viscosity and scaling of semiflexible polyelectrolyte nacmc in aqueous salt solutions, Macromolecules., 50, 332, 10.1021/acs.macromol.6b02261 Peng, 2018, Rheological properties of cellulose nanocrystal-polymeric systems, Cellulose., 25, 3229, 10.1007/s10570-018-1775-6 Xu, 2020, A review of nanocrystalline cellulose suspensions: rheology, liquid crystal ordering and colloidal phase behaviour, Adv. Colloid Interf. Sci., 275, 10.1016/j.cis.2019.102076 da Fonsêca, 2021, Rheological behavior of carboxymethylcellulose and cellulose nanocrystal aqueous dispersions, Rheol. Acta, 60, 497, 10.1007/s00397-021-01292-2 Wang, 2005, The preparation and properties of glass powder reinforced epoxy resin, Mater. Lett., 59, 94, 10.1016/j.matlet.2004.09.024 Shrestha, 2019, Surface hydrophobization of TEMPO-oxidized cellulose nanofibrils (CNFs) using a facile, aqueous modification process and its effect on properties of epoxy nanocomposites, Cellulose., 26, 9631, 10.1007/s10570-019-02762-w Lahiji, 2010, Atomic force microscopy characterization of cellulose nanocrystals, Langmuir., 26, 4480, 10.1021/la903111j Dri, 2013, Anisotropy of the elastic properties of crystalline cellulose Iβ from first principles density functional theory with Van der Waals interactions, Cellulose., 20, 2703, 10.1007/s10570-013-0071-8 Cao, 2019, Anisotropic rubber nanocomposites via magnetic-induced alignment of Fe3O4/cellulose nanocrystals hybrids obtained by templated assembly, Chem. Eng. J., 363, 203, 10.1016/j.cej.2019.01.126 Wu, 2015, Thermoset nanocomposites from waterborne bio-based epoxy resin and cellulose nanowhiskers, Carbohydr. Polym., 127, 229, 10.1016/j.carbpol.2015.03.078 Dhar, 2016, Magnetic cellulose nanocrystal based anisotropic polylactic acid nanocomposite films: influence on electrical, magnetic, thermal, and mechanical properties, ACS Appl. Mater. Interfaces, 8, 18393, 10.1021/acsami.6b02828 Peng, 2017, Enhanced dispersion and properties of a two-component epoxy nanocomposite using surface modified cellulose nanocrystals, Polymer., 112, 359, 10.1016/j.polymer.2017.02.016 Yue, 2021, Cellulose nanocrystals: accelerator and reinforcing filler for epoxy vitrimerization, ACS Appl. Mater. Interfaces, 13, 3419, 10.1021/acsami.0c19350 Omrani, 2008, Influences of cellulose nanofiber on the epoxy network formation, Mater. Sci. Eng. A, 490, 131, 10.1016/j.msea.2008.01.012