Tăng cường giảm thiểu lâu dài 1,4-dioxane trong các cột nước ngầm chảy đầu tư sinh học

Biodegradation - Tập 31 - Trang 201-211 - 2020
Marcio Luis Busi da Silva1, Ya He1, Jacques Mathieu1, Pedro J. J. Alvarez1
1Department of Civil and Environmental Engineering, Rice University, Houston, USA

Tóm tắt

Việc giảm thiểu tự nhiên lâu dài của 1,4-dioxane (dioxane) và sự phân hủy sinh học được tăng cường của nó sau khi bổ sung Pseudonocardia dioxanivorans CB1190 đã được đánh giá bằng cách sử dụng các cột nước ngầm chảy. Không quan sát thấy sự giảm thiểu tự nhiên của dioxane ngay cả sau 2 năm acclimat hóa. Tuy nhiên, sự loại bỏ dioxane đã được quan sát thấy trong các cột đã được bổ sung (34% khi lưu lượng vào là 200 µg/L và 92% cho 5 mg/L). Gene thmA mã hóa cho tetrahydrofuran monooxygenase, chất khởi đầu cho sự phân hủy dioxane của CB1190 chỉ được phát hiện tại cổng nuôi cấy và tồn tại trong nhiều tháng sau khi nuôi cấy, điều này cho thấy khả năng bền vững của việc bổ sung sinh học và tiềm năng của nó để cung cấp khả năng phân hủy sinh học nâng cao lâu dài. Tuy nhiên, do sự kết tụ rộng rãi và khả năng di động hạn chế của CB1190, tiềm năng catabolic bổ sung có thể bị giới hạn ở khu vực gần cổng nuôi cấy. Theo đó, việc bổ sung sinh học với CB1190 dường như phù hợp hơn cho việc thiết lập các rào cản sinh học. Hiệu quả của việc bổ sung sinh học có liên quan đến sẵn có của oxy. Sục khí vào lưu lượng vào của cột để tăng oxy hòa tan đã cải thiện đáng kể việc loại bỏ dioxane (p <0.05), gợi ý rằng (đối với các địa điểm có điều kiện hạn chế oxy) việc bổ sung sinh học có thể được hưởng lợi từ các phương pháp kỹ thuật để cung cấp oxy bổ sung.

Từ khóa

#1 #4-dioxane #Pseudonocardia dioxanivorans CB1190 #giảm thiểu tự nhiên #phân hủy sinh học #rào cản sinh học #oxy hòa tan #ứng dụng kỹ thuật.

Tài liệu tham khảo

Adamson DT, Anderson RH, Mahendra S, Newell CJ (2015) Evidence of 1,4-dioxane attenuation at groundwater sites contaminated with chlorinated solvents and 1,4-dioxane. Environ Sci Technol 49(11):6510–6518 Adamson DT, Mahendra S, Walker KL Jr, Rauch SR, Sengupta S, Newell CJ (2014) A multisite survey to identify the scale of the 1,4-dioxane problem at contaminated groundwater sites. Environ Sci Technol Lett 1(5):254–258 Aitchison EW, Kelley SL, Alvarez PJJ, Schnoor JL (2000) Phytoremediation of 1,4-dioxane by hybrid poplar trees. Water Environ Res 72(3):313–321 Barajas Rodriguez FJ (2016) Evaluation of 1,4-dioxane biodegradation under aerobic and anaerobic conditions. All Dissertations. 1856. https://tigerprints.clemson.edu/all_dissertations/1856 Barajas-Rodriguez FJ, Freedman DL (2018) Aerobic biodegradation kinetics for 1,4-dioxane under metabolic and cometabolic conditions. J Hazard Mater 15(350):180–188 Blotevogel J, Pijls C, Scheffer B, de Waele JP, Lee A, van Poecke R, van Belzen N, Staal W (2019) Pilot-scale electrochemical treatment of a 1,4-dioxane source zone. Groundw Monit Remediat 39(1):36–42 Costura RK, Alvarez PJJ (2000) Expression and longevity of toluene dioxygenase in Pseudomonas putida F1 induced at different dissolved oxygen concentrations. Water Res 34(11):3014–3018 Da Silva MLB, Alvarez PJJ (2002) Effects of ethanol versus MTBE on benzene, toluene, ethylbenzene, and xylene natural attenuation in aquifer columns. J Environ Eng 128(9):862–867 Deng D, Li F, Li M (2017) A novel propane monooxygenase initiating degradation of 1,4-dioxane by Mycobacterium dioxanotrophicus PH-06. Environ Sci Technol Lett 5(2):86–91 Deng D, Li F, Wu C, Li M (2018) Synchronic biotransformation of 1,4-dioxane and 1,1-dichloroethylene by a Gram-negative Propanotroph azoarcus sp. DD4. Environ Sci Technol Letters 5(8):526–532 Domenico PA, Schwartz FW (1998) Physical and chemical hydrogeology. Wiley, New York Gannon JT, Mingelgrin U, Alexander M, Wagenet RJ (1991) Bacterial transport through homogeneous soil. Soil Biol Biochem 23(12):1155–1160 Grostern A, Alvarez-Cohen L (2013) RubisCO-based CO2 fixation and C1 metabolism in the actinobacterium Pseudonocardia dioxanivorans CB1190. Environ Microbiol 15(11):3040–3053 Grostern A, Sales CM, Zhuang W-Q, Erbilgin O, Alvarez-Cohen L (2012) Glyoxylate metabolism is a key feature of the metabolic degradation of 1,4-dioxane by Pseudonocardia dioxanivorans strain CB1190. Appl Environ Microbiol 78(9):3298–3308 He Y, Mathieu J, da Silva MLB, Li M, Alvarez PJJ (2018) 1,4-Dioxane-degrading consortia can be enriched from uncontaminated soils: prevalence of Mycobacterium and soluble di-iron monooxygenase genes. Microb Biotechnol 11(1):189–198 He Y, Mathieu J, Yang Y, Yu P, da Silva MLB, Alvarez PJJ (2017) 1,4-Dioxane biodegradation by Mycobacterium dioxanotrophicus PH-06 is associated with a group-6 soluble di-iron monooxygenase. Environ Sci Technol Lett 4(11):494–499 Hockin SL, Gadd GM (2003) Linked redox precipitation of sulfur and selenium under anaerobic conditions by sulfate-reducing bacterial biofilms. Appl Environ Microbiol 69(12):7063–7072 Huang H, Shen D, Li N, Shan D, Shentu J, Zhou Y (2014) Biodegradation of 1,4-dioxane by a novel strain and its biodegradation pathway. Water Air Soil Pollut 225(9):2135 Hurst CJ, Crawford RL, Garland JL, Lipson DA (2007) Manual of environmental microbiology. American Society for Microbiology Press, Washington, DC Ikehata K, Wang-Staley L, Qu X, Li Y (2016) Treatment of groundwater contaminated with 1,4-dioxane, tetrahydrofuran, and chlorinated volatile organic compounds using advanced oxidation processes. Ozone: Sci Eng 38(6):413–424 Inoue D, Tsunoda T, Yamamoto N, Ike M, Sei K (2018) 1,4-Dioxane degradation characteristics of Rhodococcus aetherivorans JCM 14343. Biodegradation 29(3):301–310 Khan NA, Johnson MD, Kubicki JD, Holguin FO, Dungan B, Carroll KC (2019) Cyclodextrin-enhanced 1,4-dioxane treatment kinetics with TCE and 1,1,1-TCA using aqueous ozone. Chemosphere 219:335–344 Kim Y-M, Jeon J-R, Murugesan K, Kim E-J, Chang Y-S (2009) Biodegradation of 1,4-dioxane and transformation of related cyclic compounds by a newly isolated Mycobacterium sp. PH-06. Biodegradation 20(4):511 Kishimoto N, Yasuda Y, Mizutani H, Ono Y (2007) Applicability of ozonation combined with electrolysis to 1,4-dioxane removal from wastewater containing radical scavengers. Ozone: Sci Eng 29(1):13–22 Li M, Fiorenza S, Chatham JR, Mahendra S, Alvarez PJJ (2010) 1, 4-Dioxane biodegradation at low temperatures in Arctic groundwater samples. Water Res 44(9):2894–2900 Li M, Conlon P, Fiorenza S, Vitale RJ, Alvarez PJJ (2011) Rapid analysis of 1,4-dioxane in groundwater by frozen micro-extraction with gas chromatography/mass spectrometry. Groundw Monit Remediat 31(4):70–76 Li M, Mathieu J, Liu Y, Van Orden ET, Yang Y, Fiorenza S, Alvarez PJJ (2013) The abundance of tetrahydrofuran/dioxane monooxygenase genes (thmA/dxmA) and 1,4-dioxane degradation activity are significantly correlated at various impacted aquifers. Environ Sci Technol Lett 1(1):122–127 Li M, Liu Y, He Y, Mathieu J, Hatton J, DiGuiseppi W, Alvarez PJJ (2017) Hindrance of 1,4-dioxane biodegradation in microcosms biostimulated with inducing or non-inducing auxiliary substrates. Water Res 112:217–225 Li F, Deng D, Li M (2020) Distinct catalytic behaviors between two 1,4-dioxane-degrading monooxygenases: Kinetics, inhibition, and substrate range. Environ Sci Technol 54(3):1898–1908 Lippincott D, Streger SH, Schaefer CE, Hinkle J, Stormo J, Steffan RJ (2015) Bioaugmentation and propane biosparging for in situ biodegradation of 1,4-dioxane. Groundw Monit Remediat 35(2):81–92 MacFarlane KD, Cacciatore DA, Leigh DP, Yurovsky MG, Atta A (2011) Field-scale evaluation of a biobarrier for the treatment of a trichloroethene plume. Remediat J 22(1):29–41 Mahendra S, Alvarez-Cohen L (2005) Pseudonocardia dioxanivorans sp. nov., a novel actinomycete that grows on 1,4-dioxane. Int J Syst Evolut Microbiol 55(2):593–598 Mahendra S, Alvarez-Cohen L (2006) Kinetics of 1,4-dioxane biodegradation by monooxygenase-expressing bacteria. Environ Sci Technol 40(17):5435–5442 Masuda H, McClay K, Steffan RJ, Zylstra GJ (2012) Biodegradation of tetrahydrofuran and 1,4-dioxane by soluble diiron monooxygenase in Pseudonocardia sp. strain ENV478. J Mol Microbiol Biotechnol 22(5):312–316 Mohr TKG, Stickney JA, DiGuiseppi WH (2016) Environmental investigation and remediation: 1,4-dioxane and other solvent stabilizers. CRC Press, Boca Raton Parales RE, Adamus JE, White N, May HD (1994) Degradation of 1,4-dioxane by an actinomycete in pure culture. Appl Environ Microbiol 60(12):4527–4530 Polasko AL, Zulli A, Gedalanga PB, Pornwongthong P, Mahendra S (2018) A mixed microbial community for the biodegradation of chlorinated ethenes and 1,4-dioxane. Environ Sci Technol Lett 6(1):49–54 Salanitro JP, Johnson PC, Spinnler GE, Maner PM, Wisniewski HL, Bruce C (2000) Field-scale demonstration of enhanced MTBE bioremediation through aquifer bioaugmentation and oxygenation. Environ Sci Technol 34(19):4152–4162 Sales CM, Mahendra S, Grostern A, Parales RE, Goodwin LA, Woyke T, Nolan M, Lapidus A, Chertkov O, Ovchinnikova G (2011) Genome sequence of the 1,4-dioxane-degrading Pseudonocardia dioxanivorans Strain CB1190. J Bacteriol 193(17):4549–4550 Son HS, Choi SB, Khan E, Zoh KD (2006) Removal of 1,4-dioxane from water using sonication: effect of adding oxidants on the degradation kinetics. Water Res 40(4):692–698 Sei K, Miyagaki K, Kakinoki T, Fukugasako K, Inoue D, Ike M (2013) Isolation and characterization of bacterial strains that have high ability to degrade 1,4-dioxane as a sole carbon and energy source. Biodegradation 24(5):665–674 Streger SH, Vainberg S, Dong H, Hatzinger PB (2002) Enhancing transport of hydrogenophaga flava ENV735 for bioaugmentation of aquifers contaminated with methyl tert-butyl ether. Appl Environ Microbiol 68(11):5571–5579 Suzuki MT, Taylor LT, DeLong EF (2000) Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5′-nuclease assays. Appl Environ Microbiol 66(11):4605–4614 U.S.EPA (2014) Technical fact sheet – 1,4-dioxane, EPA 505-F-14-011. von Gunten U, Zobrist J (1993) Biogeochemical changes in groundwater-infiltration systems: column studies. Geochim Cosmochim Acta 57(16):3895–3906 Yamazaki S, Yamabe N, Nagano S, Fukuda A (2007) Adsorption and photocatalytic degradation of 1,4-dioxane on TiO2. J Photochem Photobiol 185(2):150–155 Wang Z, Feyen J (1998) Air entrapment effects on infiltration rate and flow instability. Water Resour Res 34(2):213–222 Zenker MJ, Borden RC, Barlaz MA (2003) Occurrence and treatment of 1,4-dioxane in aqueous environments. Environ Eng Sci 20(5):423–432 Zhang S, Gedalanga PB, Mahendra S (2016) Biodegradation kinetics of 1,4-dioxane in chlorinated solvent mixtures. Environ Sci Technol 50(17):9599–9607 Zhao L, Lu X, Polasko A, Johnson NW, Miao Y, Yang Z, Mahendra S, Gu B (2018) Co-contaminant effects on 1,4-dioxane biodegradation in packed soil column flow-through systems. Environ Pollut 243:573–581