Enhanced heat transfer using wafer-scale crack-free well-ordered porous structure surface
Tài liệu tham khảo
Zeghari, 2019, Experimental investigation of flat porous heat pipe for cooling TV box electronic chips[J], Appl. Therm. Eng., 163, 10.1016/j.applthermaleng.2019.114267
Li, 2019, A review of nucleate boiling on nanoengineered surfaces – The nanostructures, phenomena and mechanisms[J], Int. J. Heat Mass Transf., 141, 20, 10.1016/j.ijheatmasstransfer.2019.06.069
Gheitaghy, 2019, Effect of nanostructured microporous surfaces on pool boiling augmentation[J], Heat Transf. Eng., 40, 762, 10.1080/01457632.2018.1442310
Shete, 2022, Heat-transfer enhancement for the pool boiling of quasi-azeotropic refrigerant mixture (R-410A) on the re-entrant cavity surfaces[J], J. Enhanced Heat Transf., 29, 73, 10.1615/JEnhHeatTransf.2022043550
Zhang, 2022, Nucleate boiling of thin liquid films on nanostructured surfaces with hybrid wettability using molecular dynamics simulation[J], J. Mol. Liq., 366, 10.1016/j.molliq.2022.120272
Kong, 2019, Single-phase thermal and hydraulic performance of embedded silicon micro-pin fin heat sinks using R245fa[J], Int. J. Heat Mass Transf., 141, 145, 10.1016/j.ijheatmasstransfer.2019.05.073
Jaikumar, 2015, Enhanced pool boiling for electronics cooling using porous fin tops on open microchannels with FC-87[J], Appl. Therm. Eng., 91, 426, 10.1016/j.applthermaleng.2015.08.043
Matana Aguiar, 2019, An experimental study on flow boiling in microchannels under heating pulses and a methodology for predicting the wall temperature fluctuations[J], Appl. Therm. Eng., 159, 10.1016/j.applthermaleng.2019.113851
Yin, 2023, Heat transfer coefficient and pressure drop of water flow boiling in porous open microchannels heat sink[J], Appl. Therm. Eng., 218, 10.1016/j.applthermaleng.2022.119361
Yin, 2019, Heat transfer and pressure drop characteristics of water flow boiling in open microchannels[J], Int. J. Heat Mass Transf., 137, 204, 10.1016/j.ijheatmasstransfer.2019.03.108
Ling, 2018, Capillary pumping performance of porous copper fiber sintered wicks for loop heat pipes[J], Appl. Therm. Eng., 129, 1582, 10.1016/j.applthermaleng.2017.10.150
Movaghgharnezhad, 2021, Advanced micro-/nanostructured wicks for passive phase-change cooling systems[J], Nanoscale Microscale Thermophys. Eng., 25, 1, 10.1080/15567265.2021.1903631
Ha, 2017, Pool boiling characteristics and critical heat flux mechanisms of microporous surfaces and enhancement through structural modification[J], Appl. Phys. Lett., 111, 91601, 10.1063/1.4999158
Chu, 2023, Progress in enhanced pool boiling heat transfer on macro- and micro-structured surfaces[J], Int. J. Heat Mass Transf., 200, 10.1016/j.ijheatmasstransfer.2022.123530
Armstrong, 2015, Electrodeposited structurally stable V2O5 inverse opal networks as high performance thin film lithium batteries[J], ACS Appl. Mater. Interfaces, 27006, 10.1021/acsami.5b09511
Zhang, 2018, Tailoring permeability of microporous copper structures through template sintering[J], ACS Appl. Mater. Interfaces, 10, 30487, 10.1021/acsami.8b03774
Bongarala, 2022, Microlayer evaporation governs heat transfer enhancement during pool boiling from microstructured surfaces[J], Appl. Phys. Lett., 22, 120
Wang, 2021, Confinement capillarity of thin coating for boosting solar-driven water evaporation[J], Adv. Funct. Mater., 31, 2011114, 10.1002/adfm.202011114
Yang, 2023, Review on bubble dynamic of subcooled flow boiling-part a: Research methodologies[J], Int. J. Therm. Sci., 184
Manetti, 2020, Effect of copper foam thickness on pool boiling heat transfer of HFE-7100[J], Int. J. Heat Mass Transf., 152, 10.1016/j.ijheatmasstransfer.2020.119547
Saito, 2021, Preparation of ordered nanoporous indium tin oxides with large crystallites and individual control over their thermal and electrical conductivities[J], ACS Appl. Mater. Interfaces, 13, 15373, 10.1021/acsami.0c23133
Sapoletova, 2010, Controlled growth of metallic inverse opals by electrodeposition[J], Phys. Chem. Chem. Phys., 12, 15414, 10.1039/c0cp00812e
Zhang, 2018, Enhanced capillary-fed boiling in copper inverse opals via template sintering[J], Adv. Funct. Mater., 28, 1803689, 10.1002/adfm.201803689
Zhang, 2021, Design and optimization of well-ordered microporous copper structure for high heat flux cooling applications[J], Int. J. Heat Mass Transf., 173
Yang, 2023, Review on bubble dynamic of subcooled flow boiling-part B: behavior and models[J], Int. J. Therm. Sci., 184
Jiang, 2021, Centimetre-scale crack-free self-assembly for ultra-high tensile strength metallic nanolattices[J], Nat. Mater., 20, 1512, 10.1038/s41563-021-01039-7
2023
Xiao, 2017, What experiments on pinned nanobubbles can tell about the critical nucleus for bubble nucleation[J], Europ. Phys. J. E, 40, 114, 10.1140/epje/i2017-11604-7
Lee, 2018, Enhanced heat transfer using microporous copper inverse opals[J], J. Electron. Pack. Trans. ASME, 140
Wong, 2018, Saturated pool boiling enhancement using porous lattice structures produced by selective laser melting[J], Int. J. Heat Mass Transf., 121, 46, 10.1016/j.ijheatmasstransfer.2017.12.148
Moffat, 1988, Describing the uncertainties in experimental results[J], Exp. Thermal Fluid Sci., 1, 3, 10.1016/0894-1777(88)90043-X