Enhanced heat transfer using wafer-scale crack-free well-ordered porous structure surface

Jun Fang1, Hong Cheng1, Desong Fan1
1MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China

Tài liệu tham khảo

Zeghari, 2019, Experimental investigation of flat porous heat pipe for cooling TV box electronic chips[J], Appl. Therm. Eng., 163, 10.1016/j.applthermaleng.2019.114267 Li, 2019, A review of nucleate boiling on nanoengineered surfaces – The nanostructures, phenomena and mechanisms[J], Int. J. Heat Mass Transf., 141, 20, 10.1016/j.ijheatmasstransfer.2019.06.069 Gheitaghy, 2019, Effect of nanostructured microporous surfaces on pool boiling augmentation[J], Heat Transf. Eng., 40, 762, 10.1080/01457632.2018.1442310 Shete, 2022, Heat-transfer enhancement for the pool boiling of quasi-azeotropic refrigerant mixture (R-410A) on the re-entrant cavity surfaces[J], J. Enhanced Heat Transf., 29, 73, 10.1615/JEnhHeatTransf.2022043550 Zhang, 2022, Nucleate boiling of thin liquid films on nanostructured surfaces with hybrid wettability using molecular dynamics simulation[J], J. Mol. Liq., 366, 10.1016/j.molliq.2022.120272 Kong, 2019, Single-phase thermal and hydraulic performance of embedded silicon micro-pin fin heat sinks using R245fa[J], Int. J. Heat Mass Transf., 141, 145, 10.1016/j.ijheatmasstransfer.2019.05.073 Jaikumar, 2015, Enhanced pool boiling for electronics cooling using porous fin tops on open microchannels with FC-87[J], Appl. Therm. Eng., 91, 426, 10.1016/j.applthermaleng.2015.08.043 Matana Aguiar, 2019, An experimental study on flow boiling in microchannels under heating pulses and a methodology for predicting the wall temperature fluctuations[J], Appl. Therm. Eng., 159, 10.1016/j.applthermaleng.2019.113851 Yin, 2023, Heat transfer coefficient and pressure drop of water flow boiling in porous open microchannels heat sink[J], Appl. Therm. Eng., 218, 10.1016/j.applthermaleng.2022.119361 Yin, 2019, Heat transfer and pressure drop characteristics of water flow boiling in open microchannels[J], Int. J. Heat Mass Transf., 137, 204, 10.1016/j.ijheatmasstransfer.2019.03.108 Ling, 2018, Capillary pumping performance of porous copper fiber sintered wicks for loop heat pipes[J], Appl. Therm. Eng., 129, 1582, 10.1016/j.applthermaleng.2017.10.150 Movaghgharnezhad, 2021, Advanced micro-/nanostructured wicks for passive phase-change cooling systems[J], Nanoscale Microscale Thermophys. Eng., 25, 1, 10.1080/15567265.2021.1903631 Ha, 2017, Pool boiling characteristics and critical heat flux mechanisms of microporous surfaces and enhancement through structural modification[J], Appl. Phys. Lett., 111, 91601, 10.1063/1.4999158 Chu, 2023, Progress in enhanced pool boiling heat transfer on macro- and micro-structured surfaces[J], Int. J. Heat Mass Transf., 200, 10.1016/j.ijheatmasstransfer.2022.123530 Armstrong, 2015, Electrodeposited structurally stable V2O5 inverse opal networks as high performance thin film lithium batteries[J], ACS Appl. Mater. Interfaces, 27006, 10.1021/acsami.5b09511 Zhang, 2018, Tailoring permeability of microporous copper structures through template sintering[J], ACS Appl. Mater. Interfaces, 10, 30487, 10.1021/acsami.8b03774 Bongarala, 2022, Microlayer evaporation governs heat transfer enhancement during pool boiling from microstructured surfaces[J], Appl. Phys. Lett., 22, 120 Wang, 2021, Confinement capillarity of thin coating for boosting solar-driven water evaporation[J], Adv. Funct. Mater., 31, 2011114, 10.1002/adfm.202011114 Yang, 2023, Review on bubble dynamic of subcooled flow boiling-part a: Research methodologies[J], Int. J. Therm. Sci., 184 Manetti, 2020, Effect of copper foam thickness on pool boiling heat transfer of HFE-7100[J], Int. J. Heat Mass Transf., 152, 10.1016/j.ijheatmasstransfer.2020.119547 Saito, 2021, Preparation of ordered nanoporous indium tin oxides with large crystallites and individual control over their thermal and electrical conductivities[J], ACS Appl. Mater. Interfaces, 13, 15373, 10.1021/acsami.0c23133 Sapoletova, 2010, Controlled growth of metallic inverse opals by electrodeposition[J], Phys. Chem. Chem. Phys., 12, 15414, 10.1039/c0cp00812e Zhang, 2018, Enhanced capillary-fed boiling in copper inverse opals via template sintering[J], Adv. Funct. Mater., 28, 1803689, 10.1002/adfm.201803689 Zhang, 2021, Design and optimization of well-ordered microporous copper structure for high heat flux cooling applications[J], Int. J. Heat Mass Transf., 173 Yang, 2023, Review on bubble dynamic of subcooled flow boiling-part B: behavior and models[J], Int. J. Therm. Sci., 184 Jiang, 2021, Centimetre-scale crack-free self-assembly for ultra-high tensile strength metallic nanolattices[J], Nat. Mater., 20, 1512, 10.1038/s41563-021-01039-7 2023 Xiao, 2017, What experiments on pinned nanobubbles can tell about the critical nucleus for bubble nucleation[J], Europ. Phys. J. E, 40, 114, 10.1140/epje/i2017-11604-7 Lee, 2018, Enhanced heat transfer using microporous copper inverse opals[J], J. Electron. Pack. Trans. ASME, 140 Wong, 2018, Saturated pool boiling enhancement using porous lattice structures produced by selective laser melting[J], Int. J. Heat Mass Transf., 121, 46, 10.1016/j.ijheatmasstransfer.2017.12.148 Moffat, 1988, Describing the uncertainties in experimental results[J], Exp. Thermal Fluid Sci., 1, 3, 10.1016/0894-1777(88)90043-X