Enhanced growth of Nd3+:MgGdB5O10 laser crystals with intense multi-wavelength emission characteristics

Journal of Materials Chemistry C - Tập 8 Số 21 - Trang 7104-7112
Shijia Sun1,2,3,4,5, Qi Wei1,2,3,4,5, Yisheng Huang6,7,8,9,10, Feifei Yuan6,7,8,9,10, Fei Lou6,11,12,13, Degao Zhong1,2,3,4,5, Lizhen Zhang6,7,8,9,10, Zhoubin Lin6,7,8,9,10, Bing Teng1,2,3,4,5
1College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, National Demonstration Center for Experimental Applied Physics Education, Qingdao University, Qingdao, 266071, China
2National Demonstration Center for Experimental Applied Physics Education
3Qingdao 266071
4Qingdao University
5University-Industry Joint Center for Ocean Observation and Broadband Communication
6China
7Chinese Academy of sciences
8Fujian Institute of Research on the Structure of Matter
9Fuzhou 350002
10Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
11Qingdao 266061
12Qingdao University of Science and Technology
13School of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, China

Tóm tắt

Higher quality Nd:GMB crystals were obtained using enhanced K2Mo3O10–B2O3 flux. Intense multi-wavelength emissions reveal their potential in THz technology.

Từ khóa


Tài liệu tham khảo

Ferguson, 2003, Nat. Mater., 1, 26, 10.1038/nmat708

Woolard, 2005, Proc. IEEE, 93, 1722, 10.1109/JPROC.2005.853539

Siegel, 2002, IEEE Trans. Microw. Theory Technol., 50, 910, 10.1109/22.989974

Chen, 2013, Appl. Phys. B: Lasers Opt., 112, 55, 10.1007/s00340-013-5396-3

Saha, 2006, Opt. Express, 14, 4721, 10.1364/OE.14.004721

Shi, 2003, Appl. Phys. Lett., 83, 848, 10.1063/1.1596730

Taniuchi, 2004, Electron. Lett., 40, 60, 10.1049/el:20040036

Ju, 2017, J. Mater. Chem. C, 5, 7174, 10.1039/C7TC01911D

Sun, 2017, RSC Adv., 7, 32044, 10.1039/C7RA04768A

Chen, 2017, J. Mater. Chem. C, 5, 3079, 10.1039/C6TC05657A

Yu, 2014, Laser Photonics Rev., 8, 847, 10.1002/lpor.201400022

Rey-García, 2020, J. Mater. Chem. C, 8, 2065, 10.1039/C9TC05910E

Volkova, 2017, CrystEngComm, 19, 1071, 10.1039/C6CE02390H

Wang, 2019, J. Mater. Chem. C, 7, 11824, 10.1039/C9TC04371C

Wang, 2019, Opt. Lett., 44, 2153, 10.1364/OL.44.002153

Danailov, 1992, Appl. Phys. Lett., 61, 746, 10.1063/1.107785

Wu, 2009, Opt. Express, 17, 6004, 10.1364/OE.17.006004

Chen, 2000, Appl. Phys. B: Lasers Opt., 70, 475, 10.1007/s003400050847

Cho, 2014, Opt. Express, 22, 25318, 10.1364/OE.22.025318

Yu, 2009, Opt. Lett., 34, 151, 10.1364/OL.34.000151

Brenier, 2009, Opt. Express, 17, 18730, 10.1364/OE.17.018730

Zhao, 2014, Opt. Express, 22, 2228, 10.1364/OE.22.002228

Huang, 2015, J. Alloys Compd., 646, 1083, 10.1016/j.jallcom.2015.06.196

Chen, 2015, Opt. Lett., 40, 4659, 10.1364/OL.40.004659

Saubat, 1980, J. Solid State Chem., 34, 271, 10.1016/0022-4596(80)90425-9

Fan, 2007, J. Alloys Compd., 436, 252, 10.1016/j.jallcom.2006.07.054

Sheldrick, 2015, Acta Crystallogr., Sect. C: Struct, Chem., 71, 3, 10.1107/S2053229614024218

Sun, 2018, CrystEngComm, 20, 6472, 10.1039/C8CE01192C

Christ, 1977, Phys. Chem. Miner., 2, 59, 10.1007/BF00307525

Blatov, 2000, J. Appl. Crystallogr., 33, 1193, 10.1107/S0021889800007202

Huang, 2018, Materials, 11, 25, 10.3390/ma11010025

Kuwano, 2004, J. Cryst. Growth, 260, 159, 10.1016/j.jcrysgro.2003.08.060

Veronesi, 2012, Opt. Commun., 258, 315, 10.1016/j.optcom.2011.09.032

Blows, 2003, Appl. Phys. B: Lasers Opt., 76, 289, 10.1007/s00340-002-1092-4

Druon, 2002, Opt. Lett., 27, 197, 10.1364/OL.27.000197

Pan, 2014, J. Alloys Compd., 607, 16, 10.1016/j.jallcom.2014.04.066

Gong, 2009, J. Opt. Soc. Am. B, 26, 259, 10.1364/JOSAB.26.000259

Wang, 2001, J. Cryst. Growth, 233, 755, 10.1016/S0022-0248(01)01613-X

Judd, 1962, Phys. Rev., 127, 750, 10.1103/PhysRev.127.750

Ofelt, 1962, J. Chem. Phys., 37, 511, 10.1063/1.1701366

Sun, 2013, J. Alloys Compd., 551, 229, 10.1016/j.jallcom.2012.09.146

Kruke, 1966, Phys. Rev., 145, 325, 10.1103/PhysRev.145.325

Huang, 2008, J. Phys. D: Appl. Phys., 41, 225401, 10.1088/0022-3727/41/22/225401

Carnall, 1968, J. Chem. Phys., 49, 4424, 10.1063/1.1669893

Wang, 2018, J. Alloys Compd., 751, 124, 10.1016/j.jallcom.2018.04.096

Aull, 1982, IEEE J. Quantum Electron., 18, 925, 10.1109/JQE.1982.1071611

Kruke, 1974, IEEE J. Quantum Electron., 10, 450, 10.1109/JQE.1974.1068162

Xia, 2000, J. Appl. Phys., 88, 5134, 10.1063/1.1314331

Kaminskii, 1974, Phys. Status Solidi A, 26, 593, 10.1002/pssa.2210260224

Yasyukevich, 2004, J. Appl. Spectrosc., 71, 202, 10.1023/B:JAPS.0000032875.04400.a0

Chen, 2001, J. Phys. D: Appl. Phys., 13, 1171

Jaquey, 1997, J. Phys. D: Appl. Phys., 9, 9715

Zhang, 2012, Phys. Status Solidi A, 209, 1128, 10.1002/pssa.201127735

Hammons, 2000, IEEE J. Quantum Electron., 36, 991, 10.1109/3.853561

Mougel, 1997, Opt. Mater., 8, 161, 10.1016/S0925-3467(97)00019-0

Miyakawa, 1970, Phys. Rev. B: Solid State, 1, 2961, 10.1103/PhysRevB.1.2961

Wei, 2019, Inorg. Chem., 58, 3527, 10.1021/acs.inorgchem.9b00101