Enhanced cycle stability of Na0.9Ni0.45Mn0.55O2 through tailoring O3/P2 hybrid structures for sodium-ion batteries

Journal of Power Sources - Tập 406 - Trang 110-117 - 2018
Jie Chen1, Lingjun Li1,2, Ling Wu3, Qi Yao1, Huiping Yang1, Zengsheng Liu1, Lingfeng Xia1, Zhaoyong Chen1, Junfei Duan1, Shengkui Zhong3
1School of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China
2Hunan Provincial Key Laboratory of Modeling and Monitoring on the Near-Earth Electromagnetic Environments, School of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410114, PR China
3School of Iron and Steel, Soochow University, Suzhou 215000, PR China

Tài liệu tham khảo

Armand, 2008, Building better batteries, Nature, 451, 652, 10.1038/451652a Dunn, 2011, Electrical energy storage for the grid: a battery of choices, Science, 334, 928, 10.1126/science.1212741 Kim, 2016, Recent progress in electrode materials for sodium-ion batteries, Adv. Energy Mater., 6, 1600943, 10.1002/aenm.201600943 Pan, 2013, Room-temperature stationary sodium-ion batteries for large-scale electric energy storage, Energy Environ. Sci., 6, 2338, 10.1039/c3ee40847g Wang, 2018, Research progress on vanadium-based cathode materials for sodium ion batteries, J. Mater. Chem. A., 6, 8815, 10.1039/C8TA01627E Yabuuchi, 2014, Research development on sodium-ion batteries, Chem. Rev., 114, 11636, 10.1021/cr500192f Hwang, 2016, A comprehensive study of the role of transition metals in O3-type layered Na[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, and 0.8) cathodes for sodium-ion batteries, J. Mater. Chem. A., 4, 17952, 10.1039/C6TA07392A Wen, 2015, Electrochemical and structural study of layered P2-type Na2/3Ni1/3Mn2/3O2 as cathode material for sodium-ion battery, Chem. Asian J., 10, 661, 10.1002/asia.201403134 Yabuuchi, 2012, Crystal structures and electrode performance of alpha-NaFeO2 for rechargeable sodium batteries, Electrochemistry, 80, 716, 10.5796/electrochemistry.80.716 Zhu, 2016, A P2-Na0.67Co0.5Mn0.5O2 cathode material with excellent rate capability and cycling stability for sodium ion batteries, J. Mater. Chem. A., 4, 11103, 10.1039/C6TA02845D Ge, 2019, Facile synthesis of NaVPO4F/C cathode with enhanced interfacial conductivity towards long-cycle and high-rate sodium-ion batteries, Chem. Eng. J., 357, 458, 10.1016/j.cej.2018.09.099 Wu, 2018, Synthesis of carbon-coated Na2MnPO4F hollow spheres as a potential cathode material for Na-ion batteries, J. Power Sources, 374, 40, 10.1016/j.jpowsour.2017.11.029 Qian, 2012, Nanosized Na4Fe(CN)6/C composite as a low-cost and high-rate cathode material for sodium-ion batteries, Adv. Energy Mater., 2, 410, 10.1002/aenm.201100655 Wu, 2013, Single-crystal FeFe(CN)6 nanoparticles: a high capacity and high rate cathode for Na-ion batteries, J. Mater. Chem. A., 1, 10130, 10.1039/c3ta12036h Lee, 2017, High-performance sodium–organic battery by realizing four-sodium storage in disodium rhodizonate, Nature Energy, 2, 861, 10.1038/s41560-017-0014-y Wang, 2016, Suppressing the P2-O2 phase transition of Na0.67Mn0.67Ni0.33O2 by magnesium substitution for improved sodium-ion batteries, Angew. Chem., Int. Ed. Engl., 55, 7445, 10.1002/anie.201602202 Gao, 2018, Interface-rich mixed P2+T phase NaxCo0.1Mn0.9O2 (0.44 ≤ x ≤ 0.7) toward fast and high capacity sodium storage, J. Mater. Chem. A., 6, 6675, 10.1039/C8TA00206A Li, 2014, O3-type Na(Mn0.25Fe0.25Co0.25Ni0.25)O2: a quaternary layered cathode compound for rechargeable Na ion batteries, Electrochem. Commun., 49, 51, 10.1016/j.elecom.2014.10.003 Delmas, 1980, Structural classification and properties of the layered oxides, Physica, 99B, 81 Ma, 2011, Electrochemical properties of monoclinic NaMnO2, J. Electrochem. Soc., 158, A1307, 10.1149/2.035112jes Hamani, 2011, NaxVO2 as possible electrode for Na-ion batteries, Electrochem. Commun., 13, 938, 10.1016/j.elecom.2011.06.005 Komaba, 2012, Study on the reversible electrode reaction of Na1-xNi0.5Mn0.5O2 for a rechargeable sodium-ion battery, Inorg. Chem., 51, 6211, 10.1021/ic300357d Qi, 2016, Sodium-deficient O3-Na0.9[Ni0.4MnxTi0.6-x]O2 layered-oxide cathode materials for sodium-ion batteries, Part. Part. Syst. Char., 33, 538, 10.1002/ppsc.201500129 Berthelot, 2011, Electrochemical investigation of the P2-NaxCoO2 phase diagram, Nat. Mater., 10, 74, 10.1038/nmat2920 Guignard, 2013, P2-NaxVO2 system as electrodes for batteries and electron-correlated materials, Nat. Mater., 12, 74, 10.1038/nmat3478 Hasa, 2014, High performance Na0.5[Ni0.23Fe0.13Mn0.63]O2 cathode for sodium-ion batteries, Adv. Energy Mater., 4, 1400083, 10.1002/aenm.201400083 Guo, 2015, A layered P2- and O3-type composite as a high-energy cathode for rechargeable sodium-ion batteries, Angew. Chem., Int. Ed. Engl., 54, 5894, 10.1002/anie.201411788 Lee, 2014, Layered O3/P2 intergrowth cathode: toward high power Na-ion batteries, Adv. Energy Mater., 4, 1400458, 10.1002/aenm.201400458 Li, 2016, Li-substituted Co-free layered O3/P2 biphasic Na0.67Mn0.55Ni0.25Ti0.2–xLixO2 as high-rate capability cathode materials for sodium ion batteries, J. Phys. Chem. C, 120, 9007, 10.1021/acs.jpcc.5b11983 Qi, 2017, Design and comparative study of O3/P2 hybrid structures for room temperature sodium-ion batteries, ACS Appl. Mater. Interfaces, 9, 40215, 10.1021/acsami.7b11282 Zheng, 2017, Investigation of O3-type Na0.9Ni0.45MnxTi0.55-xO2 (0 ≤ x ≤ 0.55) as positive electrode materials for sodium-ion batteries, Electrochim. Acta, 233, 284, 10.1016/j.electacta.2017.03.033 Han, 2005, Study of the electrochemical properties of Ga-doped LiNi0.8Co0.2O2 synthesized by a sol–gel method, J. Power Sources, 144, 214, 10.1016/j.jpowsour.2004.12.021 Han, 2004, Electrochemical properties of LiNi0.8Co0.2-xAlxO2 prepared by a sol–gel method, J. Power Sources, 136, 132, 10.1016/j.jpowsour.2004.05.006 Yuan, 2013, Synthesis and electrochemical behaviors of layered Na0.67[Mn0.65Co0.2Ni0.15]O2 microflakes as a stable cathode material for sodium-ion batteries, J. Mater. Chem. A., 1, 3895, 10.1039/c3ta01430d Takeda, 1994, Sodium deintercalation from sodium iron oxide, Mater. Res. Bull., 29, 659, 10.1016/0025-5408(94)90122-8 Han, 2015, High performance P2-Phase Na2/3Mn0.8Fe0.1Ti0.1O2 cathode material for ambient temperature Na-ion batteries, Chem. Mater., 28, 106, 10.1021/acs.chemmater.5b03276 Yao, 2017, Designing air-stable O3-type cathode materials by combined structure modulation for Na-ion batteries, J. Am. Chem. Soc., 139, 8440, 10.1021/jacs.7b05176 Zheng, 2017, Crystal structures and electrochemical performance of air-stable Na2/3Ni1/3–xCuxMn2/3O2 in sodium cells, Chem. Mater., 29, 1623, 10.1021/acs.chemmater.6b04769 Sabi, 2017, Effect of titanium substitution in P2-Na2/3Co0.95Ti0.05O2 cathode material on the structural and electrochemical properties, ACS Appl. Mater. Interfaces, 9, 37778, 10.1021/acsami.7b11636 Wang, 2017, Copper-substituted Na0.67Ni0.3−xCuxMn0.7O2 cathode materials for sodium-ion batteries with suppressed P2–O2 phase transition, J. Mater. Chem. A., 5, 8752, 10.1039/C7TA00880E Chen, 2018, Cu2+ dual-doped layer-tunnel hybrid Na0.6Mn1-xCuxO2 as a cathode of sodium-ion battery with enhanced structure stability, electrochemical property and air stability, ACS Appl. Mater. Interfaces, 10, 10147, 10.1021/acsami.8b00614 Meng, 2017, A compact process to prepare LiNi0.8Co0.1Mn0.1O2 cathode material from nickel-copper sulfide ore, Hydrometallurgy, 174, 1, 10.1016/j.hydromet.2017.09.010 Li, 2015, A hydrolysis-hydrothermal route for the synthesis of ultrathin LiAlO2-inlaid LiNi0.5Co0.2Mn0.3O2 as a high-performance cathode material for lithium ion batteries, J. Mater. Chem. A., 3, 894, 10.1039/C4TA05902F