Enhanced cycle stability of Na0.9Ni0.45Mn0.55O2 through tailoring O3/P2 hybrid structures for sodium-ion batteries
Tài liệu tham khảo
Armand, 2008, Building better batteries, Nature, 451, 652, 10.1038/451652a
Dunn, 2011, Electrical energy storage for the grid: a battery of choices, Science, 334, 928, 10.1126/science.1212741
Kim, 2016, Recent progress in electrode materials for sodium-ion batteries, Adv. Energy Mater., 6, 1600943, 10.1002/aenm.201600943
Pan, 2013, Room-temperature stationary sodium-ion batteries for large-scale electric energy storage, Energy Environ. Sci., 6, 2338, 10.1039/c3ee40847g
Wang, 2018, Research progress on vanadium-based cathode materials for sodium ion batteries, J. Mater. Chem. A., 6, 8815, 10.1039/C8TA01627E
Yabuuchi, 2014, Research development on sodium-ion batteries, Chem. Rev., 114, 11636, 10.1021/cr500192f
Hwang, 2016, A comprehensive study of the role of transition metals in O3-type layered Na[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, and 0.8) cathodes for sodium-ion batteries, J. Mater. Chem. A., 4, 17952, 10.1039/C6TA07392A
Wen, 2015, Electrochemical and structural study of layered P2-type Na2/3Ni1/3Mn2/3O2 as cathode material for sodium-ion battery, Chem. Asian J., 10, 661, 10.1002/asia.201403134
Yabuuchi, 2012, Crystal structures and electrode performance of alpha-NaFeO2 for rechargeable sodium batteries, Electrochemistry, 80, 716, 10.5796/electrochemistry.80.716
Zhu, 2016, A P2-Na0.67Co0.5Mn0.5O2 cathode material with excellent rate capability and cycling stability for sodium ion batteries, J. Mater. Chem. A., 4, 11103, 10.1039/C6TA02845D
Ge, 2019, Facile synthesis of NaVPO4F/C cathode with enhanced interfacial conductivity towards long-cycle and high-rate sodium-ion batteries, Chem. Eng. J., 357, 458, 10.1016/j.cej.2018.09.099
Wu, 2018, Synthesis of carbon-coated Na2MnPO4F hollow spheres as a potential cathode material for Na-ion batteries, J. Power Sources, 374, 40, 10.1016/j.jpowsour.2017.11.029
Qian, 2012, Nanosized Na4Fe(CN)6/C composite as a low-cost and high-rate cathode material for sodium-ion batteries, Adv. Energy Mater., 2, 410, 10.1002/aenm.201100655
Wu, 2013, Single-crystal FeFe(CN)6 nanoparticles: a high capacity and high rate cathode for Na-ion batteries, J. Mater. Chem. A., 1, 10130, 10.1039/c3ta12036h
Lee, 2017, High-performance sodium–organic battery by realizing four-sodium storage in disodium rhodizonate, Nature Energy, 2, 861, 10.1038/s41560-017-0014-y
Wang, 2016, Suppressing the P2-O2 phase transition of Na0.67Mn0.67Ni0.33O2 by magnesium substitution for improved sodium-ion batteries, Angew. Chem., Int. Ed. Engl., 55, 7445, 10.1002/anie.201602202
Gao, 2018, Interface-rich mixed P2+T phase NaxCo0.1Mn0.9O2 (0.44 ≤ x ≤ 0.7) toward fast and high capacity sodium storage, J. Mater. Chem. A., 6, 6675, 10.1039/C8TA00206A
Li, 2014, O3-type Na(Mn0.25Fe0.25Co0.25Ni0.25)O2: a quaternary layered cathode compound for rechargeable Na ion batteries, Electrochem. Commun., 49, 51, 10.1016/j.elecom.2014.10.003
Delmas, 1980, Structural classification and properties of the layered oxides, Physica, 99B, 81
Ma, 2011, Electrochemical properties of monoclinic NaMnO2, J. Electrochem. Soc., 158, A1307, 10.1149/2.035112jes
Hamani, 2011, NaxVO2 as possible electrode for Na-ion batteries, Electrochem. Commun., 13, 938, 10.1016/j.elecom.2011.06.005
Komaba, 2012, Study on the reversible electrode reaction of Na1-xNi0.5Mn0.5O2 for a rechargeable sodium-ion battery, Inorg. Chem., 51, 6211, 10.1021/ic300357d
Qi, 2016, Sodium-deficient O3-Na0.9[Ni0.4MnxTi0.6-x]O2 layered-oxide cathode materials for sodium-ion batteries, Part. Part. Syst. Char., 33, 538, 10.1002/ppsc.201500129
Berthelot, 2011, Electrochemical investigation of the P2-NaxCoO2 phase diagram, Nat. Mater., 10, 74, 10.1038/nmat2920
Guignard, 2013, P2-NaxVO2 system as electrodes for batteries and electron-correlated materials, Nat. Mater., 12, 74, 10.1038/nmat3478
Hasa, 2014, High performance Na0.5[Ni0.23Fe0.13Mn0.63]O2 cathode for sodium-ion batteries, Adv. Energy Mater., 4, 1400083, 10.1002/aenm.201400083
Guo, 2015, A layered P2- and O3-type composite as a high-energy cathode for rechargeable sodium-ion batteries, Angew. Chem., Int. Ed. Engl., 54, 5894, 10.1002/anie.201411788
Lee, 2014, Layered O3/P2 intergrowth cathode: toward high power Na-ion batteries, Adv. Energy Mater., 4, 1400458, 10.1002/aenm.201400458
Li, 2016, Li-substituted Co-free layered O3/P2 biphasic Na0.67Mn0.55Ni0.25Ti0.2–xLixO2 as high-rate capability cathode materials for sodium ion batteries, J. Phys. Chem. C, 120, 9007, 10.1021/acs.jpcc.5b11983
Qi, 2017, Design and comparative study of O3/P2 hybrid structures for room temperature sodium-ion batteries, ACS Appl. Mater. Interfaces, 9, 40215, 10.1021/acsami.7b11282
Zheng, 2017, Investigation of O3-type Na0.9Ni0.45MnxTi0.55-xO2 (0 ≤ x ≤ 0.55) as positive electrode materials for sodium-ion batteries, Electrochim. Acta, 233, 284, 10.1016/j.electacta.2017.03.033
Han, 2005, Study of the electrochemical properties of Ga-doped LiNi0.8Co0.2O2 synthesized by a sol–gel method, J. Power Sources, 144, 214, 10.1016/j.jpowsour.2004.12.021
Han, 2004, Electrochemical properties of LiNi0.8Co0.2-xAlxO2 prepared by a sol–gel method, J. Power Sources, 136, 132, 10.1016/j.jpowsour.2004.05.006
Yuan, 2013, Synthesis and electrochemical behaviors of layered Na0.67[Mn0.65Co0.2Ni0.15]O2 microflakes as a stable cathode material for sodium-ion batteries, J. Mater. Chem. A., 1, 3895, 10.1039/c3ta01430d
Takeda, 1994, Sodium deintercalation from sodium iron oxide, Mater. Res. Bull., 29, 659, 10.1016/0025-5408(94)90122-8
Han, 2015, High performance P2-Phase Na2/3Mn0.8Fe0.1Ti0.1O2 cathode material for ambient temperature Na-ion batteries, Chem. Mater., 28, 106, 10.1021/acs.chemmater.5b03276
Yao, 2017, Designing air-stable O3-type cathode materials by combined structure modulation for Na-ion batteries, J. Am. Chem. Soc., 139, 8440, 10.1021/jacs.7b05176
Zheng, 2017, Crystal structures and electrochemical performance of air-stable Na2/3Ni1/3–xCuxMn2/3O2 in sodium cells, Chem. Mater., 29, 1623, 10.1021/acs.chemmater.6b04769
Sabi, 2017, Effect of titanium substitution in P2-Na2/3Co0.95Ti0.05O2 cathode material on the structural and electrochemical properties, ACS Appl. Mater. Interfaces, 9, 37778, 10.1021/acsami.7b11636
Wang, 2017, Copper-substituted Na0.67Ni0.3−xCuxMn0.7O2 cathode materials for sodium-ion batteries with suppressed P2–O2 phase transition, J. Mater. Chem. A., 5, 8752, 10.1039/C7TA00880E
Chen, 2018, Cu2+ dual-doped layer-tunnel hybrid Na0.6Mn1-xCuxO2 as a cathode of sodium-ion battery with enhanced structure stability, electrochemical property and air stability, ACS Appl. Mater. Interfaces, 10, 10147, 10.1021/acsami.8b00614
Meng, 2017, A compact process to prepare LiNi0.8Co0.1Mn0.1O2 cathode material from nickel-copper sulfide ore, Hydrometallurgy, 174, 1, 10.1016/j.hydromet.2017.09.010
Li, 2015, A hydrolysis-hydrothermal route for the synthesis of ultrathin LiAlO2-inlaid LiNi0.5Co0.2Mn0.3O2 as a high-performance cathode material for lithium ion batteries, J. Mater. Chem. A., 3, 894, 10.1039/C4TA05902F