Enhanced biomass production by Phaeodactylum tricornutum overexpressing phosphoenolpyruvate carboxylase
Tài liệu tham khảo
Hannon, 2010, Biofuels from algae: challenges and potential, Biofuels, 1, 763, 10.4155/bfs.10.44
Wijiffels, 2010, An outlook on microalgal biofuels, Science, 329, 796, 10.1126/science.1189003
Schubert, 2006, Can biofuels finally take center stage?, Nat. Biotechnol., 24, 777, 10.1038/nbt0706-777
Somerville, 2006, The billion-ton biofuels vision, Science, 312, 1277, 10.1126/science.1130034
Christopher, 1998, Primary production of the biosphere: integrating terrestrial and ocean components, Science, 281, 237, 10.1126/science.281.5374.237
Bowler, 2010, Oceanographic and biogeochemical insights from diatom genomes, Annu. Rev. Mar. Sci., 2, 333, 10.1146/annurev-marine-120308-081051
Falkowski, 1998, Biogeochemical controls and feedbacks on ocean primary production, Science, 281, 200, 10.1126/science.281.5374.200
Giordano, 2005, CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution, Annu. Rev. Plant Biol., 56, 99, 10.1146/annurev.arplant.56.032604.144052
Raven, 2008, Insights into the evolution of CCMs from comparisons with other resource acquisition and assimilation processes, Physiol. Plant., 133, 4, 10.1111/j.1399-3054.2007.01024.x
Becker, 2007, Micro-algae as a source of protein, Biotechnol. Adv., 25, 207, 10.1016/j.biotechadv.2006.11.002
Levitan, 2014, Diatoms: a fossil fuel of the future, Trends Biotechnol., 32, 117, 10.1016/j.tibtech.2014.01.004
Kroth, 2007, Molecular biology and the biotechnological potential of diatoms, Adv. Exp. Med. Biol., 616, 23, 10.1007/978-0-387-75532-8_3
Saade, 2009, Molecular tools for discovering the secrets of diatoms, Bioscience, 59, 757, 10.1525/bio.2009.59.9.7
Bozarth, 2009, Diatoms in biotechnology: modern tools and applications, Appl. Microbiol. Biotechnol., 82, 195, 10.1007/s00253-008-1804-8
Bowler, 2008, The Phaeodactylum genome reveals the evolutionary history of diatom genomes, Nature, 456, 239, 10.1038/nature07410
Apt, 1996, Stable nuclear transformation of the diatom Phaeodactylum tricornutum, Mol Gen Genet, 252, 572
Falciatore, 1999, Transformation of nonselectable reporter genes in marine diatoms, Mar. Biotechnol., 1, 239, 10.1007/PL00011773
Seo, 2015, Development of a new constitutive expression system for transformation of the diatom Phaeodactylum tricornutum, Algal Res., 11, 50, 10.1016/j.algal.2015.05.012
Gimpel, 2015, In metabolic engineering of eukaryotic microalgae: potential and challenges come with great diversity, Front. Microbiol., 6, 1376, 10.3389/fmicb.2015.01376
Badger, 1998, The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplast-based CO2-concentrating mechanisms in algae, Can. J. Bot., 76, 1052
Moroney, 1999, How do algae concentrate CO2 to increase the efficiency of photosynthetic carbon fixation?, Plant Physiol., 119, 9, 10.1104/pp.119.1.9
Miyachi, 2003, Historical perspective on microalgal and cyanobacterial acclimation to low- and extremely high-CO2 conditions, Photosynth. Res., 77, 139, 10.1023/A:1025817616865
Chang, 2013, Conversion of carbon dioxide to oxaloacetate using integrated carbonic anhydrase and phosphoenolpyruvate carboxylase, Bioprocess Biosyst. Eng., 36, 1923, 10.1007/s00449-013-0968-5
Kroth, 2008, A model for carbohydrate metabolism in the diatom Phaeodactylum tricornutum deduced from comparative whole genome analysis, PLoS One, 3, 10.1371/journal.pone.0001426
Norici, 2002, Role of phosphoenolpyruvate carboxylase in anaplerosis in the green microalga Dunaliella salina cultured under different nitrogen regimes, Physiol. Plant., 116, 186, 10.1034/j.1399-3054.2002.1160207.x
Yang, 2014, Systems-level analysis of the metabolic response of the diatom Phaeodactylum tricornutum to phosphorus stress, Environ. Microbiol., 16, 1793, 10.1111/1462-2920.12411
Murray, 1980, Rapid isolation of high molecular weight plant DNA, Nucleic Acids Res., 8, 4321, 10.1093/nar/8.19.4321
García, 2000, Mixotrophic growth of Phaeodactylum tricornutum on glycerol: growth rate and fatty acid profile, J. Appl. Phycol., 12, 239, 10.1023/A:1008123000002
Bligh, 1959, A rapid method of total lipid extraction and purification, Can. J. Biochem. Physiol., 37, 911, 10.1139/y59-099
Park, 2015, Contrasting photoadaptive strategies of two morphologically distinct Dunaliella species under various salinities, J. Appl. Phycol., 27, 1053, 10.1007/s10811-014-0394-3
Dwyer, 2012, Antisense reduction in the RsbO protein of photosystem II leads to decreased quantum yields but similar maximal photosynthetic rates, J. Exp. Bot., 63, 4781, 10.1093/jxb/ers156
Melis, 2009, Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency, Plant Sci., 177, 272, 10.1016/j.plantsci.2009.06.005
Chang, 2014, Improvement of the phosphoenolpyruvate carboxylase activity of Phaeodactylum tricornutum PEPCase 1 through protein engineering, Enzym. Microb. Technol., 60, 64, 10.1016/j.enzmictec.2014.04.007
Obata, 2013, The central carbon and energy metabolism of marine diatoms, Metabolites, 3, 325, 10.3390/metabo3020325
Roberts, 2007, C3 and C4 pathways of photosynthetic carbon assimilation in marine diatoms are under genetic, not environmental, control, Plant Physiol., 145, 230, 10.1104/pp.107.102616
Valenzuela, 2012, Potential role of multiple carbon fixation pathways during lipid accumulation in Phaeodactylum tricornutum, Biotechnol. Biofuels, 5, 40, 10.1186/1754-6834-5-40
Yang, 2016, Knockdown of phosphoenolpyruvate carboxykinase increase carbon flux to lipid synthesis in Phaeodactylum tricornutum, Algal Res., 15, 50, 10.1016/j.algal.2016.02.004
Chollet, 1996, Phosphoenolpyruvate carboxylase: a uniquitous, highly regulated enzyme in plants, Annu. Rev. Plant Physiol. Plant Mol. Biol., 47, 273, 10.1146/annurev.arplant.47.1.273
Dalziel, 2012, The bacterial-type phosphoenolpyruvate carboxylase isozyme from developing castor oil seeds is subject to in vivo regulatory phosphorylation at serin-451, FEBS Lett., 586, 1049, 10.1016/j.febslet.2012.02.054
Deng, 2014, Expression and knockdown of the PEPC1 gene affect carbon flux in the biosynthesis of triacylglycerols by the green alga Chlamydomonas reinhardtii, Biotechnol. Lett., 36, 2199, 10.1007/s10529-014-1593-3
Singh, 2016, Trends and novel strategies for enhancing lipid accumulation and quality in microalgae, Renew. Sust. Energ. Rev., 55, 1, 10.1016/j.rser.2015.11.001
Daboussi, 2014, Genome engineering empowers the diatom Phaeodactylum tricornutum for biotechnology, Nat. Commun., 5, 3831, 10.1038/ncomms4831
Nymark, 2016, A CRISPR/Cas9 system adapted for gene editing in marine algae, Sci Rep., 6, 24951, 10.1038/srep24951