Enhanced biomass production by Phaeodactylum tricornutum overexpressing phosphoenolpyruvate carboxylase

Algal Research - Tập 31 - Trang 489-496 - 2018
Seungbeom Seo1, Hancheol Jeon1,2, Kwang Suk Chang1, EonSeon Jin1
1Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
2LMO Technology Development Team, National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea

Tài liệu tham khảo

Hannon, 2010, Biofuels from algae: challenges and potential, Biofuels, 1, 763, 10.4155/bfs.10.44 Wijiffels, 2010, An outlook on microalgal biofuels, Science, 329, 796, 10.1126/science.1189003 Schubert, 2006, Can biofuels finally take center stage?, Nat. Biotechnol., 24, 777, 10.1038/nbt0706-777 Somerville, 2006, The billion-ton biofuels vision, Science, 312, 1277, 10.1126/science.1130034 Christopher, 1998, Primary production of the biosphere: integrating terrestrial and ocean components, Science, 281, 237, 10.1126/science.281.5374.237 Bowler, 2010, Oceanographic and biogeochemical insights from diatom genomes, Annu. Rev. Mar. Sci., 2, 333, 10.1146/annurev-marine-120308-081051 Falkowski, 1998, Biogeochemical controls and feedbacks on ocean primary production, Science, 281, 200, 10.1126/science.281.5374.200 Giordano, 2005, CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution, Annu. Rev. Plant Biol., 56, 99, 10.1146/annurev.arplant.56.032604.144052 Raven, 2008, Insights into the evolution of CCMs from comparisons with other resource acquisition and assimilation processes, Physiol. Plant., 133, 4, 10.1111/j.1399-3054.2007.01024.x Becker, 2007, Micro-algae as a source of protein, Biotechnol. Adv., 25, 207, 10.1016/j.biotechadv.2006.11.002 Levitan, 2014, Diatoms: a fossil fuel of the future, Trends Biotechnol., 32, 117, 10.1016/j.tibtech.2014.01.004 Kroth, 2007, Molecular biology and the biotechnological potential of diatoms, Adv. Exp. Med. Biol., 616, 23, 10.1007/978-0-387-75532-8_3 Saade, 2009, Molecular tools for discovering the secrets of diatoms, Bioscience, 59, 757, 10.1525/bio.2009.59.9.7 Bozarth, 2009, Diatoms in biotechnology: modern tools and applications, Appl. Microbiol. Biotechnol., 82, 195, 10.1007/s00253-008-1804-8 Bowler, 2008, The Phaeodactylum genome reveals the evolutionary history of diatom genomes, Nature, 456, 239, 10.1038/nature07410 Apt, 1996, Stable nuclear transformation of the diatom Phaeodactylum tricornutum, Mol Gen Genet, 252, 572 Falciatore, 1999, Transformation of nonselectable reporter genes in marine diatoms, Mar. Biotechnol., 1, 239, 10.1007/PL00011773 Seo, 2015, Development of a new constitutive expression system for transformation of the diatom Phaeodactylum tricornutum, Algal Res., 11, 50, 10.1016/j.algal.2015.05.012 Gimpel, 2015, In metabolic engineering of eukaryotic microalgae: potential and challenges come with great diversity, Front. Microbiol., 6, 1376, 10.3389/fmicb.2015.01376 Badger, 1998, The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplast-based CO2-concentrating mechanisms in algae, Can. J. Bot., 76, 1052 Moroney, 1999, How do algae concentrate CO2 to increase the efficiency of photosynthetic carbon fixation?, Plant Physiol., 119, 9, 10.1104/pp.119.1.9 Miyachi, 2003, Historical perspective on microalgal and cyanobacterial acclimation to low- and extremely high-CO2 conditions, Photosynth. Res., 77, 139, 10.1023/A:1025817616865 Chang, 2013, Conversion of carbon dioxide to oxaloacetate using integrated carbonic anhydrase and phosphoenolpyruvate carboxylase, Bioprocess Biosyst. Eng., 36, 1923, 10.1007/s00449-013-0968-5 Kroth, 2008, A model for carbohydrate metabolism in the diatom Phaeodactylum tricornutum deduced from comparative whole genome analysis, PLoS One, 3, 10.1371/journal.pone.0001426 Norici, 2002, Role of phosphoenolpyruvate carboxylase in anaplerosis in the green microalga Dunaliella salina cultured under different nitrogen regimes, Physiol. Plant., 116, 186, 10.1034/j.1399-3054.2002.1160207.x Yang, 2014, Systems-level analysis of the metabolic response of the diatom Phaeodactylum tricornutum to phosphorus stress, Environ. Microbiol., 16, 1793, 10.1111/1462-2920.12411 Murray, 1980, Rapid isolation of high molecular weight plant DNA, Nucleic Acids Res., 8, 4321, 10.1093/nar/8.19.4321 García, 2000, Mixotrophic growth of Phaeodactylum tricornutum on glycerol: growth rate and fatty acid profile, J. Appl. Phycol., 12, 239, 10.1023/A:1008123000002 Bligh, 1959, A rapid method of total lipid extraction and purification, Can. J. Biochem. Physiol., 37, 911, 10.1139/y59-099 Park, 2015, Contrasting photoadaptive strategies of two morphologically distinct Dunaliella species under various salinities, J. Appl. Phycol., 27, 1053, 10.1007/s10811-014-0394-3 Dwyer, 2012, Antisense reduction in the RsbO protein of photosystem II leads to decreased quantum yields but similar maximal photosynthetic rates, J. Exp. Bot., 63, 4781, 10.1093/jxb/ers156 Melis, 2009, Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency, Plant Sci., 177, 272, 10.1016/j.plantsci.2009.06.005 Chang, 2014, Improvement of the phosphoenolpyruvate carboxylase activity of Phaeodactylum tricornutum PEPCase 1 through protein engineering, Enzym. Microb. Technol., 60, 64, 10.1016/j.enzmictec.2014.04.007 Obata, 2013, The central carbon and energy metabolism of marine diatoms, Metabolites, 3, 325, 10.3390/metabo3020325 Roberts, 2007, C3 and C4 pathways of photosynthetic carbon assimilation in marine diatoms are under genetic, not environmental, control, Plant Physiol., 145, 230, 10.1104/pp.107.102616 Valenzuela, 2012, Potential role of multiple carbon fixation pathways during lipid accumulation in Phaeodactylum tricornutum, Biotechnol. Biofuels, 5, 40, 10.1186/1754-6834-5-40 Yang, 2016, Knockdown of phosphoenolpyruvate carboxykinase increase carbon flux to lipid synthesis in Phaeodactylum tricornutum, Algal Res., 15, 50, 10.1016/j.algal.2016.02.004 Chollet, 1996, Phosphoenolpyruvate carboxylase: a uniquitous, highly regulated enzyme in plants, Annu. Rev. Plant Physiol. Plant Mol. Biol., 47, 273, 10.1146/annurev.arplant.47.1.273 Dalziel, 2012, The bacterial-type phosphoenolpyruvate carboxylase isozyme from developing castor oil seeds is subject to in vivo regulatory phosphorylation at serin-451, FEBS Lett., 586, 1049, 10.1016/j.febslet.2012.02.054 Deng, 2014, Expression and knockdown of the PEPC1 gene affect carbon flux in the biosynthesis of triacylglycerols by the green alga Chlamydomonas reinhardtii, Biotechnol. Lett., 36, 2199, 10.1007/s10529-014-1593-3 Singh, 2016, Trends and novel strategies for enhancing lipid accumulation and quality in microalgae, Renew. Sust. Energ. Rev., 55, 1, 10.1016/j.rser.2015.11.001 Daboussi, 2014, Genome engineering empowers the diatom Phaeodactylum tricornutum for biotechnology, Nat. Commun., 5, 3831, 10.1038/ncomms4831 Nymark, 2016, A CRISPR/Cas9 system adapted for gene editing in marine algae, Sci Rep., 6, 24951, 10.1038/srep24951