Enhanced antimicrobial performance of cloisite 30B/poly (ε-caprolactone) over cloisite 30B/poly ( l -lactic acid) as evidenced by structural features
Tài liệu tham khảo
Aggarwal, 2007, The molecular targets and therapeutic uses of curcumin in health and disease, 10.1007/978-0-387-46401-5
Babu, 2016, Nylon 6, 12/cloisite 30B electrospun nanocomposites for dental applications, J. Siberian Fed. Univ. Biol., 9, 198, 10.17516/1997-1389-2016-9-2-198-211
Babu, 2016, Antimicrobial, antibiofilm, and microbial barrier properties of poly (ε-caprolactone)/cloisite 30B thin films, vol. 6, 249
Breen, 1995, Quaternary ammonium compounds inhibit and reduce the attachment of viable salmonella typhimurium to poultry tissues, J. Food Sci., 60, 1191, 10.1111/j.1365-2621.1995.tb04553.x
Chandran, 2015, Compatibilizing action and localization of clay in a polypropylene/natural rubber (PP/NR) blend, RSC Adv., 5, 86265, 10.1039/C5RA14352G
Chávez-Montes, 2016, Poly-lactide/exfoliated C30B interactions and influence on thermo-mechanical properties due to artificial weathering, Polymer, 8, 154, 10.3390/polym8040154
Chen, 2004, Polymer–clay nanocomposites: an overview with emphasis on interaction mechanisms, Br. Ceram. Trans., 103, 241, 10.1179/096797804X4592
Cheng, 2004, Surface modification of ultra thin poly (ε-caprolactone) films using acrylic acid and collagen, Biomaterials, 25, 1991, 10.1016/j.biomaterials.2003.08.038
Das, 2010, Crystalline morphology of PLA/clay nanocomposite films and its correlation with other properties, J. Appl. Polym. Sci., 118, 143, 10.1002/app.32345
Dottori, 2011, Production and properties of solvent-cast poly (ε-caprolactone) composites with carbon nanostructures, J. Appl. Polym. Sci., 119, 3544, 10.1002/app.33033
Elias, 2016, Segmental dynamics, morphology and thermomechanical properties of electrospun poly (ε-caprolactone) nanofibers in the presence of an interacting filler, RSC Adv., 6, 21376, 10.1039/C5RA24251G
Fukushima, 2009, Nanocomposites of PLA and PCL based on montmorillonite and sepiolite, Mater. Sci. Eng. C, 29, 1433, 10.1016/j.msec.2008.11.005
Ghosal, 2014, Collagen coated electrospun polycaprolactone (PCL) with titanium dioxide (TiO2) from an environmentally benign solvent: preliminary physico-chemical studies for skin substitute, J. Polym. Res., 21, 1, 10.1007/s10965-014-0410-y
Giannakas, 2016, Preparation, characterization, mechanical, barrier and antimicrobial properties of chitosan/PVOH/clay nanocomposites, Carbohydr. Polym., 140, 408, 10.1016/j.carbpol.2015.12.072
Gurlek, 2017, Synthesis and characterization of polycaprolactone for anterior cruciate ligament regeneration, Mater. Sci. Eng. C, 71, 820, 10.1016/j.msec.2016.10.071
Hadj-Hamou, 2017, Thermal stability and decomposition kinetic studies of antimicrobial PCL/nanoclay packaging films, Polym. Bull., 74, 3833, 10.1007/s00289-017-1929-y
Islam, 2017, Properties of wood polymer nanocomposites impregnated with ST-co-EDA/Nanoclay, 125
Koyama, 1977, Formation of regular packets of Staphylococcus aureus cells, J. Bacteriol., 129, 1518, 10.1128/JB.129.3.1518-1523.1977
Li, 2011, Thermal and biodegradable properties of poly(l-lactide)/poly(ε-Caprolactone) compounded with functionalized organoclay, J. Polym. Environ., 19, 59, 10.1007/s10924-010-0256-2
Luo, 2003, Characterization and modeling of mechanical behavior of polymer/clay nanocomposites, Compos. Sci. Technol., 63, 1607, 10.1016/S0266-3538(03)00060-5
Luo, 2017, Electrospun poly (lactic acid) fibers containing novel chlorhexidine particles with sustained antibacterial activity, Biomater. Sci., 5, 111, 10.1039/C6BM00646A
Marras, 2008, Biodegradable polymer nanocomposites: the role of nanoclays on the thermomechanical characteristics and the electrospun fibrous structure, Acta Biomater., 4, 756, 10.1016/j.actbio.2007.12.005
Nam, 2003, Crystallization behavior and morphology of biodegradable polylactide/layered silicate nanocomposite, Macromolecules, 36, 7126, 10.1021/ma034623j
Nguyen, 2006, Preparation of polymer–clay nanocomposites and their properties, Adv. Polym. Technol., 25, 270, 10.1002/adv.20079
Ning, 2012, Realizing the enhancement of interfacial interaction in semicrystalline polymer/filler composites via interfacial crystallization, Prog. Polym. Sci., 37, 1425, 10.1016/j.progpolymsci.2011.12.005
Olivato, 2017, Sepiolite as a promising nanoclay for nano-biocomposites based on starch and biodegradable polyester, Mater. Sci. Eng. C, 70, 296, 10.1016/j.msec.2016.08.077
Pavlidou, 2008, A review on polymer–layered silicate nanocomposites, Prog. Polym. Sci., 33, 1119, 10.1016/j.progpolymsci.2008.07.008
Rhim, 2009, Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films, LWT-Food Sci. Technol., 42, 612, 10.1016/j.lwt.2008.02.015
Rodríguez-Tobías, 2016, Improvement of mechanical properties and antibacterial activity of electrospun poly (d, l-lactide)-based mats by incorporation of ZnO-graft-poly (d, l-lactide) nanoparticles, Mater. Chem. Phys., 182, 324, 10.1016/j.matchemphys.2016.07.039
Saikia, 2010, Fourier transform infrared spectroscopic characterization of kaolinite from Assam and Meghalaya, Northeastern India, J. Mod. Phys., 1, 206, 10.4236/jmp.2010.14031
Shim, 2017, Nanostructured ZnO films on stainless steel are highly safe and effective for antimicrobial applications, Appl. Microbiol. Biotechnol., 101, 2801, 10.1007/s00253-017-8099-6
Smith, 2005
Sorrentino, 2006, Diffusion behavior in polymer–clay nanocomposites, J. Polym. Sci. B Polym. Phys., 44, 265, 10.1002/polb.20684
Stefanović, 2017, Montmorillonite/poly (urethane-siloxane) nanocomposites: morphological, thermal, mechanical and surface properties, Appl. Clay Sci., 149, 136, 10.1016/j.clay.2017.08.021
Sun, 2016, Characterization and antibacterial properties of porous fibers containing silver ions, Appl. Surf. Sci., 387, 828, 10.1016/j.apsusc.2016.07.015
Thomas, 2015, Electrospun polycaprolactone membrane incorporated with biosynthesized silver nanoparticles as effective wound dressing material, Appl. Biochem. Biotechnol., 176, 2213, 10.1007/s12010-015-1709-9
Vasudeo, 2016, Development in air permeability of natural rubber tire tube compound by adding variable dosage of nanoclay, 34