Tăng cường khả năng hấp phụ methyl xanh trên các nanoplatelets graphene đã được sửa đổi hóa học nhờ vào các tương tác thuận lợi

Springer Science and Business Media LLC - Tập 21 - Trang 1-18 - 2019
Rabita Mohd Firdaus1, Noor Izzati Md Rosli1, Jaafar Ghanbaja2, Brigitte Vigolo2, Abdul Rahman Mohamed1
1School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Malaysia
2Institut Jean Lamour, CNRS-Université de Lorraine UMR 7198, Nancy, France

Tóm tắt

Trong nghiên cứu hiện tại, các nanoplatelets graphene (GNPs) được sử dụng có chất lượng cấu trúc cao, tạo cơ hội để điều chỉnh các tương tác giữa chất hấp phụ và chất bị hấp phụ. Việc sửa đổi hóa học của chúng bằng phương pháp oxy hóa axit đơn giản dẫn đến sự phân tán dễ dàng trong nước. Các đặc tính hình thái, cấu trúc và hóa học của các GNPs đã được chức năng hóa được nghiên cứu sâu sắc thông qua một loạt các kỹ thuật đặc trưng bổ sung. Nghiên cứu tham số bao gồm các hiệu ứng của nồng độ ban đầu, thời gian tiếp xúc, pH dung dịch và nhiệt độ trong quá trình hấp phụ methyl xanh (MB) cho phép xác định những yếu tố có liên quan đến việc nâng cao hiệu suất loại bỏ MB. Hấp phụ MB được tìm thấy là tăng lên theo thời gian tiếp xúc, nhiệt độ dung dịch và pH axit. Tính chất của các tương tác MB-GNP và các cơ chế hấp phụ có thể, vẫn còn ít được hiểu biết, được nghiên cứu đặc biệt trong bài báo này. Hấp phụ MB-GNP được cho là tuân theo isotherm Langmuir và mô hình động học giả định bậc nhất. Khả năng hấp phụ MB trên các GNPs đã được sửa đổi hóa học (qm = 225 mg/g) so với bề mặt bên ngoài là tương đối cao so với các vật liệu nano carbon khác. Chất hấp phụ này chắc chắn sẽ xứng đáng được xem xét kỹ lưỡng hơn để loại bỏ các loại thuốc nhuộm khác và kim loại nặng từ nước thải.

Từ khóa

#Graphene nanoplatelets #Methylene blue #Adsorption #Chemical modification #Wastewater treatment

Tài liệu tham khảo

Achee TC, Sun W, Hope JT, Quitzau SG, Sweeney CB, Shah SA, Habib T, Green MJ (2018) High-yield scalable graphene nanosheet production from compressed graphite using electrochemical exfoliation. Sci Rep 8(1):14525. https://doi.org/10.1038/s41598-018-32741-3 Ali N, Teixeira JA, Addali A (2018) A review on Nanofluids: fabrication, stability, and Thermophysical properties. J Nanomater 2018:33. https://doi.org/10.1155/2018/6978130 Amiri A, Shanbedi M, Ahmadi G, Eshghi H, Kazi SN, Chew BT, Savari M, Zubir MNM (2016) Mass production of highly-porous graphene for high-performance supercapacitors. Sci Rep 6:32686. https://doi.org/10.1038/srep32686 https://www.nature.com/articles/srep32686#supplementary-information Banerjee S, Chattopadhyaya MC (2017) Adsorption characteristics for the removal of a toxic dye, tartrazine from aqueous solutions by a low cost agricultural by-product. Arab J Chem 10:S1629–S1638. https://doi.org/10.1016/j.arabjc.2013.06.005 Bradder P, Ling SK, Wang S, Liu S (2011) Dye adsorption on layered graphite oxide. J Chem Eng Data 56(1):138–141. https://doi.org/10.1021/je101049g Chen L, Yang J, Zeng X, Zhang L, Yuan W (2013) Adsorption of methylene blue in water by reduced graphene oxide: effect of functional groups. Mater Express 3(4):281–290 Chen D, Zhang H, Yang K, Wang H (2016) Functionalization of 4-aminothiophenol and 3-aminopropyltriethoxysilane with graphene oxide for potential dye and copper removal. J Hazard Mater 310:179–187. https://doi.org/10.1016/j.jhazmat.2016.02.040 Cheng Y, Zhou S, Hu P, Zhao G, Li Y, Zhang X, Han W (2017) Enhanced mechanical, thermal, and electric properties of graphene aerogels via supercritical ethanol drying and high-temperature thermal reduction. Sci Rep 7(1):1439. https://doi.org/10.1038/s41598-017-01601-x Dimiev AM, Alemany LB, Tour JM (2012) Graphene oxide. Origin of acidity, its instability in water, and a new dynamic structural model. ACS Nano 7(1):576–588 Dreyer DR, Todd AD, Bielawski CW (2014) Harnessing the chemistry of graphene oxide. Chem Soc Rev 43(15):5288–5301 Ermakov VA, Alaferdov AV, Vaz AR, Perim E, Autreto PAS, Paupitz R, Galvao DS, Moshkalev SA (2015) Burning Graphene layer-by-layer. Sci Rep 5:11546. https://doi.org/10.1038/srep11546 https://www.nature.com/articles/srep11546#supplementary-information Gadipelli S, Guo ZX (2015) Graphene-based materials: synthesis and gas sorption, storage and separation. Prog Mater Sci 69:1–60. https://doi.org/10.1016/j.pmatsci.2014.10.004 Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS (2012) Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112(11):6156–6214. https://doi.org/10.1021/cr3000412 Ghosh S, Bao W, Nika DL, Subrina S, Pokatilov EP, Lau CN, Balandin AA (2010) Dimensional crossover of thermal transport in few-layer graphene. Nat Mater 9(7):555–558 Guo Y, Deng J, Zhu J, Zhou X, Bai R (2016) Removal of mercury (II) and methylene blue from a wastewater environment with magnetic graphene oxide: adsorption kinetics, isotherms and mechanism. RSC Adv 6(86):82523–82536 Han S, Liu K, Hu L, Teng F, Yu P, Zhu Y (2017) Superior adsorption and regenerable dye adsorbent based on flower-like molybdenum disulfide nanostructure. Sci Rep 7:43599. https://doi.org/10.1038/srep43599 Hayyan M, Abo-Hamad A, AlSaadi MA, Hashim MA (2015) Functionalization of graphene using deep eutectic solvents. Nanoscale Res Lett 10(1):324. https://doi.org/10.1186/s11671-015-1004-2 He J, Cui A, Deng S, Chen JP (2018) Treatment of methylene blue containing wastewater by a cost-effective micro-scale biochar/polysulfone mixed matrix hollow fiber membrane: performance and mechanism studies. J Colloid Interface Sci 512:190–197 Holkar CR, Jadhav AJ, Pinjari DV, Mahamuni NM, Pandit AB (2016) A critical review on textile wastewater treatments: possible approaches. J Environ Manag 182:351–366 Hou D, Liu Q, Wang X, Quan Y, Qiao Z, Yu L, Ding S (2018) Facile synthesis of graphene via reduction of graphene oxide by artemisinin in ethanol. J Mater. https://doi.org/10.1016/j.jmat.2018.01.002 Hu Y, Guo T, Ye X, Li Q, Guo M, Liu H, Wu Z (2013) Dye adsorption by resins: effect of ionic strength on hydrophobic and electrostatic interactions. Chem Eng J 228:392–397 Johnson DW, Dobson BP, Coleman KS (2015) A manufacturing perspective on graphene dispersions. Curr Opin Colloid Interface Sci 20(5):367–382. https://doi.org/10.1016/j.cocis.2015.11.004 Kabiri S, Tran DN, Cole MA, Losic D (2016) Functionalized three-dimensional (3D) graphene composite for high efficiency removal of mercury. Environmental Science: Water Research & Technology 2(2):390–402 Kaya NS, Yadav A, Wehrhold M, Zuccaro L, Balasubramanian K (2018) Binding kinetics of methylene blue on monolayer Graphene investigated by multiparameter surface plasmon resonance. ACS Omega 3(7):7133–7140. https://doi.org/10.1021/acsomega.8b00689 Khan S, Malik A (2014) Environmental and health effects of textile industry wastewater. In: Environmental deterioration and human health. Springer, pp 55–71 Kushwaha AK, Gupta N, Chattopadhyaya MC (2017) Adsorption behavior of lead onto a new class of functionalized silica gel. Arab J Chem 10:S81–S89. https://doi.org/10.1016/j.arabjc.2012.06.010 Lagergren S (1898) Zur theorie der sogenannten adsorption geloster stoffe. Kungliga svenska vetenskapsakademiens Handlingar 24:1–39 Lan Huong PT, Tu N, Lan H, Thang LH, Van Quy N, Tuan PA, Dinh NX, Phan VN, Le A-T (2018) Functional manganese ferrite/graphene oxide nanocomposites: effects of graphene oxide on the adsorption mechanisms of organic MB dye and inorganic As(v) ions from aqueous solution. RSC Adv 8(22):12376–12389. https://doi.org/10.1039/C8RA00270C Li Y-H, Du Q, Tonghao L, Peng X, Wang J, Sun J, Wang Y, Wu S, Wang Z, Xia Y, Xia L (2013a) Comparative study of methylene blue dye adsorption onto activated carbon, graphene oxide, and carbon nanotubes. 91. https://doi.org/10.1016/j.cherd.2012.07.007 Li Y, Du Q, Liu T, Sun J, Wang Y, Wu S, Wang Z, Xia Y, Xia L (2013b) Methylene blue adsorption on graphene oxide/calcium alginate composites. Carbohydr Polym 95(1):501–507 Liu T, Li Y, Du Q, Sun J, Jiao Y, Yang G, Wang Z, Xia Y, Zhang W, Wang K (2012) Adsorption of methylene blue from aqueous solution by graphene. Colloids Surf B: Biointerfaces 90:197–203 Lv M, Yan L, Liu C, Su C, Zhou Q, Zhang X, Lan Y, Zheng Y, Lai L, Liu X (2018) Non-covalent functionalized graphene oxide (GO) adsorbent with an organic gelator for co-adsorption of dye, endocrine-disruptor, pharmaceutical and metal ion. Chem Eng J 349:791–799 McKay G, Sweeney AG (1980) Principles of dye removal from textile effluent. Water Air Soil Pollut 14(1):3–11 Mercier G, Gleize J, Ghanbaja J, Marêché J-F, Vigolo B (2013) Soft oxidation of single-walled carbon nanotube samples. J Phys Chem C 117(16):8522–8529 Mohandoss M, Gupta SS, Nelleri A, Pradeep T, Maliyekkal SM (2017) Solar mediated reduction of graphene oxide. RSC Adv 7(2):957–963. https://doi.org/10.1039/C6RA24696F Nassar NN, Marei NN, Vitale G, Arar LA (2015) Adsorptive removal of dyes from synthetic and real textile wastewater using magnetic iron oxide nanoparticles: thermodynamic and mechanistic insights. Can J Chem Eng 93(11):1965–1974 Novoselov KS, Fal’ko VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) A roadmap for graphene. Nature 490:192–200. https://doi.org/10.1038/nature11458 Pathania D, Sharma S, Singh P (2017) Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arab J Chem 10:S1445–S1451. https://doi.org/10.1016/j.arabjc.2013.04.021 Pérez-Ramírez EE, de la Luz-Asunción M, Martínez-Hernández AL, Velasco-Santos C (2016) Graphene materials to remove organic pollutants and heavy metals from water: photocatalysis and adsorption. In: Semiconductor Photocatalysis-Materials, Mechanisms and Applications. InTechOpen Polat EO, Balci O, Kakenov N, Uzlu HB, Kocabas C, Dahiya R (2015) Synthesis of large area graphene for high performance in flexible optoelectronic devices. Sci Rep 5:16744. https://doi.org/10.1038/srep16744 https://www.nature.com/articles/srep16744#supplementary-information Qi Y, Yang M, Xu W, He S, Men Y (2017) Natural polysaccharides-modified graphene oxide for adsorption of organic dyes from aqueous solutions. J Colloid Interface Sci 486:84–96. https://doi.org/10.1016/j.jcis.2016.09.058 Qi C, Zhao L, Lin Y, Wu D (2018) Graphene oxide/chitosan sponge as a novel filtering material for the removal of dye from water. J Colloid Interface Sci 517:18–27 Qiao X-Q, Hu F-C, Tian F-Y, Hou D-F, Li D-S (2016) Equilibrium and kinetic studies on MB adsorption by ultrathin 2D MoS 2 nanosheets. RSC Adv 6(14):11631–11636 Robati D, Rajabi M, Moradi O, Najafi F, Tyagi I, Agarwal S, Gupta VK (2016) Kinetics and thermodynamics of malachite green dye adsorption from aqueous solutions on graphene oxide and reduced graphene oxide. J Mol Liq 214:259–263. https://doi.org/10.1016/j.molliq.2015.12.073 Selen V, Güler Ö, Özer D, Evin E (2016) Synthesized multi-walled carbon nanotubes as a potential adsorbent for the removal of methylene blue dye: kinetics, isotherms, and thermodynamics. Desalin Water Treat 57(19):8826–8838 Shukla AK, Alam J, Alhoshan M, Dass LA, Ali FAA, Mishra U, Ansari MA (2018) Removal of heavy metal ions using a carboxylated graphene oxide-incorporated polyphenylsulfone nanofiltration membrane. Environ Sci 4(3):438–448 Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442(7100):282 Szlachta M, Wójtowicz P (2013) Adsorption of methylene blue and Congo red from aqueous solution by activated carbon and carbon nanotubes. Water Sci Technol 68(10):2240–2248 Tahir U, Yasmin A, Khan UH (2016) Phytoremediation: potential flora for synthetic dyestuff metabolism. Journal of King Saud University-Science 28(2):119–130 Temkin M, Pyzhev V (1940) Recent modifications to Langmuir isotherms Wei D, Liu Y, Zhang H, Huang L, Wu B, Chen J, Yu G (2009) Scalable synthesis of few-layer graphene ribbons with controlled morphologies by a template method and their applications in nanoelectromechanical switches. J Am Chem Soc 131(31):11147–11154 Yao Y, Xu F, Chen M, Xu Z, Zhu Z (2010) Adsorption behavior of methylene blue on carbon nanotubes. Bioresour Technol 101(9):3040–3046 Yu X, Cheng H, Zhang M, Zhao Y, Qu L, Shi G (2017) Graphene-based smart materials. Nat Rev Mater 2:17046–17013. https://doi.org/10.1038/natrevmats.2017.46 Yusuf M, Elfghi F, Zaidi SA, Abdullah E, Khan MA (2015) Applications of graphene and its derivatives as an adsorbent for heavy metal and dye removal: a systematic and comprehensive overview. RSC Adv 5(62):50392–50420 Zazouli MA, Azari A, Dehghan S, Salmani Malekkolae R (2016) Adsorption of methylene blue from aqueous solution onto activated carbons developed from eucalyptus bark and Crataegus oxyacantha core. Water Sci Technol 74(9):2021–2035 Zhao D, Ding Y, Chen S, Bai T, Ma Y (2013) Adsorption of methylene blue on carbon nanotubes from aqueous solutions. Asian J Chem 25(10):5756 Zhao L, Yang S-T, Feng S, Ma Q, Peng X, Wu D (2017) Preparation and application of carboxylated graphene oxide sponge in dye removal. Int J Environ Res Public Health 14(11):1301. https://doi.org/10.3390/ijerph14111301 Zhou X, Zhang Y, Huang Z, Lu D, Zhu A, Shi G (2016) Ionic liquids modified graphene oxide composites: a high efficient adsorbent for phthalates from aqueous solution. Sci Rep 6:38417. https://doi.org/10.1038/srep38417 https://www.nature.com/articles/srep38417#supplementary-information