Hành vi hấp phụ được cải thiện của EDTA sửa đổi - graphene oxide đối với methylene blue và các ion kim loại nặng

S. M. Khadivi1, L. Edjlali1, A. Akbarzadeh2, K. Seyyedi1
1Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran
2Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran

Tóm tắt

Trong nghiên cứu này, cấu trúc axit edetic (EDTA) đã được sửa đổi hóa học bằng axit aspartic và lysine (hai α-amino acid) qua quá trình chức năng hóa liên covalent. EDTA sửa đổi thu được (m-EDTA) đã được sử dụng để chức năng hóa bề mặt graphene oxide (GO) nhằm loại bỏ hiệu quả thuốc nhuộm từ nước thải. Thuốc nhuộm xanh methylene đã được hấp phụ trên chất hấp phụ hybrid thông qua các tương tác π–π với bề mặt GO liên hợp cũng như tương tác tĩnh điện với các vị trí chelat m-EDTA nhiều giá trị. Chất hấp phụ hybrid được tổng hợp đã được đặc trưng bằng phương pháp nhiễu xạ tia X, kính hiển vi điện tử quét, quang phổ hồng ngoại biến đổi Fourier và quang phổ cực tím - khả kiến. 0,03 g chất hấp phụ hybrid tổng hợp đã được sử dụng để xử lý 30 mL chất ô nhiễm (1 g/L). Kết quả cho thấy hiệu quả loại bỏ cao được đạt được trong 20 phút đầu tiên, xác nhận rằng việc sửa đổi GO có tác động tích cực đến hiệu quả loại bỏ.

Từ khóa

#EDTA #graphene oxide #thuốc nhuộm methylene blue #ion kim loại nặng #hấp phụ #xử lý nước thải

Tài liệu tham khảo

Alipour N, Namazi H (2018) Removing Paraquat and Nile blue from aqueous solution using double-oxidized graphene oxide coated by polydopamine nanocomposite. Int J Environ Sci Technol 15:1–8 Birken DL, Oldendorf WH (1989) N-acetyl-l-aspartic acid: a literature review of a compound prominent in 1H-NMR spectroscopic studies of brain. Neurosci Biobehav Rev 13(1):23–31 Carpio IEM, Mangadlao JD, Nguyen HN, Advincula RC, Rodrigues DF (2014) Graphene oxide functionalized with ethylenediamine triacetic acid for heavy metal adsorption and anti-microbial applications. Carbon 77:289–301 Chandra V, Park J, Chun Y, Lee JW, Hwang I-C, Kim KS (2010) Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 4(7):3979–3986 Collins WR, Schmois E, Swager TM (2011) Graphene oxide as an electrophile for carbon nucleophiles. Chem Commun 47(31):8790–8792 Da̧browski A, Hubicki Z, Podkościelny P, Robens E (2004) Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere 56(2):91–106 Ebrahiminezhad A, Ghasemi Y, Rasoul-Amini S, Barar J, Davaran S (2012) Impact of amino-acid coating on the synthesis and characteristics of iron-oxide nanoparticles (IONs). Bull Korean Chem Soc 33(12):3957–3962 Fang J, Kita H, Okamoto K-I (2000) Hyperbranched polyimides for gas separation applications. 1. Synthesis and characterization. Macromolecules 33(13):4639–4646 Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92(3):407–418 Gao W (ed) (2015) The chemistry of graphene oxide. In: Graphene oxide. Springer, Cham, pp 61–95 Gardiner J (1976) Complexation of trace metals by ethylenediaminetetraacetic acid (EDTA) in natural waters. Water Res 10(6):507–514 Ge F, Li M-M, Ye H, Zhao B-X (2012) Effective removal of heavy metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles. J Hazard Mater 211:366–372 Gou H, He J, Mo Z, Wei X, Hu R, Wang Y, Guo R (2016) A highly effective electrochemical chiral sensor of tryptophan enantiomers based on covalently functionalize reduced graphene oxide with l-lysine. J Electrochem Soc 163(7):B272–B279 Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7(2):60. https://doi.org/10.2478/intox-2014-0009 Kajjam AB, Giri S, Sivakumar V (2017) Triphenylamine-based donor–π–acceptor organic phosphors: synthesis, characterization and theoretical study. Mater Chem Front 1(3):512–520 Kumar NM, Varaprasad K, Rao KM, Babu AS, Srinivasulu M, Naidu SV (2012) A novel biodegradable green poly (l-aspartic acid-citric acid) copolymer for antimicrobial applications. J Polym Environ 20(1):17–22 Lai Q, Zhu S, Luo X, Zou M, Huang S (2012) Ultraviolet–visible spectroscopy of graphene oxides. AIP Adv 2(3):032146 Li X, Zhou H, Wu W, Wei S, Xu Y, Kuang Y (2015) Studies of heavy metal ion adsorption on Chitosan/Sulfydryl-functionalized graphene oxide composites. J Colloid Interface Sci 448:389–397 Li J-H, Wang S-S, Zhang D-B, Ni X-X, Zhang Q-Q (2016) Amino acids functionalized graphene oxide for enhanced hydrophilicity and antifouling property of poly (vinylidene fluoride) membranes. Chin J Polym Sci 34(7):805–819 Liu W, Koh KL, Lu J, Yang L, Phua S, Kong J, Chen Z, Lu X (2012) Simultaneous catalyzing and reinforcing effects of imidazole-functionalized graphene in anhydride-cured epoxies. J Mater Chem 22(35):18395–18402 Meng H, Zhang X, Chen Q, Wei J, Wang Y, Dong A, Yang H, Tan T, Cao H (2015) Preparation of poly (aspartic acid) superabsorbent hydrogels by solvent-free processes. J Polym Eng 35(7):647–655 Meshitsuka S, Ishizawa M, Nose T (1987) Uptake and toxic effects of heavy metal ions: interactions among cadmium, copper and zinc in cultured cells. Experientia 43(2):151–156 Mosai AK, Tutu H (2018) The effect of crop exudates and EDTA on cadmium adsorption by agricultural podsolic soil: implications on groundwater. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-018-1927-0 Namvari M, Namazi H (2016) Magnetic sweet graphene nanosheets: preparation, characterization and application in removal of methylene blue. Int J Environ Sci Technol 13(2):599–606. https://doi.org/10.1007/s13762-015-0885-z Ngah WW, Hanafiah M (2008) Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review. Biores Technol 99(10):3935–3948 Olajire AA, Bello MO, Abdul-Hammed M, Olabemiwo OM (2006) Comparative evaluation of EDTA, pyridine and acetic acid for the assessment of available heavy metals from domestic and industrial sludges. Int J Environ Sci Technol 3(4):341–349. https://doi.org/10.1007/bf03325943 Ozaki H, Sharma K, Saktaywin W (2002) Performance of an ultra-low-pressure reverse osmosis membrane (ULPROM) for separating heavy metal: effects of interference parameters. Desalination 144(1–3):287–294 Qdais HA, Moussa H (2004) Removal of heavy metals from wastewater by membrane processes: a comparative study. Desalination 164(2):105–110 Rajput L, Biradha K (2011) Crystalline forms of 1,3,5-benzene-tri (pyridinyl) carboxamides: isolated site hydrates as polymorphs and solvates. J Mol Struct 991(1):97–102 Roweton S, Huang S, Swift G (1997) Poly (aspartic acid): synthesis, biodegradation, and current applications. J Environ Polym Degrad 5(3):175–181 Rozenberg M, Shoham G (2007) FTIR spectra of solid poly-l-lysine in the stretching NH mode range. Biophys Chem 125(1):166–171 Shahriary L, Athawale AA (2014) Graphene oxide synthesized by using modified hummers approach. Int J Renew Energy Environ Eng 2(01):58–63 Shahzad A, Miran W, Rasool K, Nawaz M, Jang J, Lim S-R, Lee DS (2017) Heavy metals removal by EDTA-functionalized chitosan graphene oxide nanocomposites. RSC Adv 7(16):9764–9771 Shih I-L, Van Y-T, Shen M-H (2004) Biomedical applications of chemically and microbiologically synthesized poly (glutamic acid) and poly (lysine). Mini Rev Med Chem 4(2):179–188 Shi-Jia M, Yu-Chang S, Li-Hua X, Si-Dong L, Te H, Hong-Bo T (2013) X-ray diffraction pattern of graphite oxide. Chin Phys Lett 30(9):096101 Sikes CS (2017) Lysine-based polymer coagulants for use in clarification of process waters. Google Patents, Mountain View Stobinski L, Lesiak B, Malolepszy A, Mazurkiewicz M, Mierzwa B, Zemek J, Jiricek P, Bieloshapka I (2014) Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J Electron Spectrosc Relat Phenom 195:145–154 Sud D, Mahajan G, Kaur M (2008) Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions—a review. Biores Technol 99(14):6017–6027 Tuzen M, Saygi KO, Soylak M (2008) Solid phase extraction of heavy metal ions in environmental samples on multiwalled carbon nanotubes. J Hazard Mater 152(2):632–639 Vohra MS (2010) Adsorption of lead, ethylenediaminetetraacetic acid and lead-ethylenediaminetetraacetic acid complex onto granular activated carbon. Int J Environ Sci Technol 7(4):687–696. https://doi.org/10.1007/bf03326178 Wang C, Zhang C, Wang P, Zhu P, Wu W, Ye C, Dalton L (2000a) High Tg donor-embedded polyimides for second-order nonlinear optical applications. Polymer 41(7):2583–2590 Wang C, Zhang C, Wang P, Zhu P, Wu W, Ye C, Dalton LR (2000b) High Tg donor-embedded polyimides for second-order nonlinear optical applications. Polymer 41(7):2583–2590. https://doi.org/10.1016/S0032-3861(99)00420-6 Yan Y, Li J, Kong F, Jia K, He S, Wang B (2017) l-Lysine-grafted graphene oxide as an effective adsorbent for the removal of methylene blue and metal ions. Beilstein J Nanotechnol 8:2680 Yoe JH (1958) The analytical uses of ethylenediaminetetraacetic acid. J Am Chem Soc 80(10):2600 Yoshida T, Nagasawa T (2003) ε-Poly-l-lysine: microbial production, biodegradation and application potential. Appl Microbiol Biotechnol 62(1):21–26