Enhanced Musculoskeletal Modeling for Prediction of Intervertebral Disc Stress Within Annulus Fibrosus and Nucleus Pulposus Regions During Flexion Movement

Tien Tuan Dao1
1Sorbonne University, Université de Technologie de Compiègne, CNRS, UMR 7338 Biomechanics and Bioengineering, Centre de Recherche Royallieu

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ambard, D., & Swider, P. (2006). A predictive mechano-biological model of the bone-implant healing. European Journal of Mechanics-A/Solids, 25(6), 927–937.

Vette, A. H., Yoshida, T., Thrasher, T. A., Masani, K., & Popovic, M. R. (2012). A comprehensive three-dimensional dynamic model of the human head and trunk for estimating lumbar and cervical joint torques and forces from upper body kinematics. Medical Engineering & Physics, 34(5), 640–649.

Wilke, H. J., Neef, P., Caimi, M., Hoogland, T., & Claes, L. E. (1999). New in vivo measurements of pressures in the intervertebral disc in daily life. Spine, 24, 755–762.

Christophy, M., Senan, F. N. A., Lotz, J. C., & O’Reilly, O. M. (2012). A musculoskeletal model for the lumbar spine. Biomechanics and Modeling in Mechanobiology, 11(1–2), 19–34.

Han, K. S., Zander, T., Taylor, W. R., & Rohlmann, A. (2012). An enhanced and validated generic thoraco-lumbar spine model for prediction of muscle forces. Medical Engineering & Physics, 34(6), 709–716.

Dao, T. T., Pouletaut, P., Charleux, F., Lazáry, Á., Eltes, P., Varga, P. P., et al. (2015). Multimodal medical imaging (CT and dynamic MRI) data and computer-graphics multi-physical model for the estimation of patient specific lumbar spine muscle forces. Data & Knowledge Engineering, 96–97, 3–18.

Nachemson, A. (1976). The lumbar spine: An orthopaedic challenge. Spine, 1, 59–71.

Shirazi-Adl, A. (2006). Analysis of large compression loads on lumbar spine in flexion and in torsion using a novel wrapping element. Journal of Biomechanics, 39(2), 267–275.

Shirazi-Adl, S. A., Shrivastava, S. C., & Ahmed, A. M. (1984). Stress analysis of the lumbar disc-body unit in compression. A three-dimensional nonlinear finite element study. Spine, 9(2), 120–134.

Arjmand, N., Gagnon, D., Plamondon, A., Shirazi-Adl, A., & Larivière, C. (2009). Comparison of trunk muscle forces and spinal loads estimated by two biomechanical models. Clinical Biomechanics, 24(7), 533–541.

Wagnac, E., Arnoux, P. J., Garo, A., El-Rich, M., & Aubin, C. E. (2001). Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads. Journal of Biomechanical Engineering, 133(10), 101007.

Baer, A. E., Laursen, T. A., Guilak, F., & Setton, L. A. (2003). The micromechanical environment of intervertebral disc cells determined by a finite deformation, anisotropic, and biphasic finite element model. Journal of Biomechanical Engineering, 125(1), 1–11.

Groth, K. M., & Granata, K. P. (2008). The viscoelastic standard nonlinear solid model: predicting the response of the lumbar intervertebral disk to low-frequency vibrations. Journal of Biomechanical Engineering, 130(3), 031005.

Malandrino, A., Pozo, J. M., Castro-Mateos, I., Frangi, A. F., van Rijsbergen, M. M., Ito, K., et al. (2015). On the relative relevance of subject-specific geometries and degeneration-specific mechanical properties for the study of cell death in human intervertebral disc models. Frontiers in Bioengineering and Biotechnology, 3(5), 1–15.

Lee, K. K., & Teo, E. C. (2004). Poroelastic analysis of lumbar spinal stability in combined compression and anterior shear. Journal of Spinal Disorders & Techniques, 17(5), 429–438.

Burns, M. L., Kaleps, I., & Kazarian, L. E. (1984). Analysis of compressive creep behavior of the vertebral unit subjected to a uniform axial loading using exact parametric solution equations of kelvin-solid models—Part I. Human intervertebral joints. Journal of Biomechanics, 17(2), 113–130.

Li, S., Patwardhan, A. G., Amirouche, F. M., Havey, R., & Meade, K. P. (1995). Limitations of the standard linear solid model of intervertebral discs subject to prolonged loading and low-frequency vibration in axial compression. Journal of Biomechanics, 28(7), 779–790.

Lisi, A. J., O’Neill, C. W., Lindsey, D. P., Cooperstein, R., Cooperstein, E., & Zucherman, J. F. (2006). Measurement of in vivo lumbar intervertebral disc pressure during spinal manipulation: A feasibility study. Journal of Applied Biomechanics, 22(3), 234–239.

Nachemson, A., & Morris, J. M. (1964). In vivo measurements of intradiscal pressure. Discometry, a method for the determination of pressure in the lower lumbar discs. The Journal of Bone and Joint Surgery, 46, 1077–1092.

Takahashi, I., Kikuchi, S., Sato, K., & Sato, N. (2006). Mechanical load of the lumbar spine during forward bending motion of the trunk—a biomechanical study. Spine, 31, 18–23.

Panjabi, M., Brown, M., Lindahl, S., Irstam, L., & Hermens, M. (1988). Intrinsic disc pressure as a measure of integrity of the lumbar spine. Spine, 13, 913–917.

Reitmaier, S., Schmidt, H., Ihler, R., Kocak, T., Graf, N., Ignatius, A., et al. (2013). Preliminary investigations on intradiscal pressures during daily activities: an in vivo study using the merino sheep. PLoS One, 8, e69610.

Vergroesen, P. P. A., van der Veen, A. J., van Royen, B. J., Kingma, I., & Smit, T. H. (2014). Intradiscal pressure depends on recent loading and correlates with disc height and compressive stiffness. European Spine Journal, 23, 2359–2368.

Bashkuev, M., Vergroesen, P. P. A., Dreischarf, M., Schilling, C., van der Veen, A. J., Schmidt, H., et al. (2016). Intradiscal pressure measurements: A challenge or a routine? Journal of Biomechanics, 49(6), 864–868.

Delp, S. L., Anderson, F. C., Arnold, A. S., Loan, P., Habib, A., John, C. T., et al. (2007). OpenSim: Open-source software to create and analyze dynamic simulations of movement. IEEE Transactions on Biomedical Engineering, 55, 1940–1950.

Vette, A. H., Yoshida, T., Thrasher, T. A., Masani, K., & Popovic, M. R. (2011). A complete, non-lumped, and verifiable set of upper body segment parameters for three-dimensional dynamic modeling. Medical Engineering & Physics, 33(1), 70–79.

Ackerman, M. J. (1999). The visible human project: A resource for education. Academic Medicine, 74(6), 667–670.

Cheng, C. K., Chen, H. H., Chen, C. S., Chen, C. L., & Chen, C. Y. (2000). Segment inertial properties of Chinese adults determined from magnetic resonance imaging. Clinical Biomechanics, 15(8), 559–566.

Lee, I. H., Choi, H. Y., Lee, J. H., & Han, D. C. (2004). Development if finite element human neck model for vehicle safety simulation. International Journal of Automotive Technology, 5(1), 33–46.

Wu, G., Siegler, S., Allard, P., Kirtley, C., Leardini, A., Rosenbaum, D., et al. (2002). ISB recommendation on definition of joint coordinate system of various joints for the reporting of human joint motion—part 1 ankle, hip, and spine. Journal of Biomechanics, 35, 543–548.

Pearcy, M. J., & Bogduk, N. (1988). Instantaneous axes of rotation of the lumbar intervertebral joints. Spine, 13, 1033–1041.

Thelen, D. G. (2003). Adjustment of muscle mechanics model parameters to simulate dynamic contractions in older adults. Journal of Biomechanical Engineering, 125, 70–77.

Arnold, E. M., Ward, S. R., Lieber, R. L., & Delp, S. L. (2010). A model of the lower limb for analysis of human movement. Annals of Biomedical Engineering, 38, 269–279.

Fregly, B. J., Besier, T. F., Lloyd, D. G., Delp, S. L., Banks, S. A., Pandy, M. G., et al. (2012). Grand challenge competition to predict in vivo knee loads. Journal of Orthopaedic Research, 30, 503–513.

Holmes, A. D., & Hukins, D. W. (1996). Analysis of load-relaxation in compressed segments of lumbar spine. Medical Engineering & Physics, 18(2), 99–104.

Gardner-Morse, M. G., & Stokes, I. A. (2004). Structural behavior of human lumbar spinal motion segments. Journal of Biomechanics, 37(2), 205–212.

Rupp, T. K., Ehlers, W., Karajan, N., Günther, M., & Schmitt, S. (2015). A forward dynamics simulation of human lumbar spine flexion predicting the load sharing of intervertebral discs, ligaments, and muscles. Biomechanics and Modeling in Mechanobiology, 14(5), 1081–1105.

Hayes, M. A., Howard, T. C., Gruel, C. R., & Kopta, J. A. (1989). Roentgenographic evaluation of lumbar spine flexion-extension in asymptomatic individuals. Spine, 14(3), 327–331.

Ibarz, E., Herrera, A., Más, Y., Rodríguez-Vela, J., Cegoñino, J., Puértolas, S., et al. (2013). Development and kinematic verification of a finite element model for the lumbar spine: Application to disc degeneration. BioMed Research International, 4, 1–18.

Pearcy, M., Portek, I., & Sheperd, J. (1984). Three-dimensional x-ray analysis of normal movement in the lumbar spine. Spine, 9(3), 294–297.

White, A. A., & Panjabi, M. M. (1990). Clinical biomechanics of the spine. Philadelphia: Lippincott Williams & Wilkins.

Li, G., Wang, S., Passias, P., Xia, Q., Li, G., & Wood, K. (2009). Segmental in vivo vertebral motion during functional human lumbar spine activities. European Spine Journal, 18(7), 1013–1021.

Sato, K., Kikuchi, S., & Yonezawa, T. (1999). In vivo intradiscal pressure measurement in healthy individuals and in patients with ongoing back problems. Spine, 24(23), 2468–2474.

Susumu, S. (1974). A dynamic study on the lumbar intervertebral disc. Juntendo Medical Journal, 20(4), 465–483.

Whatley, B. R., & Wen, X. (2012). Intervertebral disc (IVD): Structure, degeneration, repair and regeneration. Materials Science and Engineering C, 32, 61–77.

Wang, C., Auerbach, J. D., Witschey, W. R., Balderston, R. A., Reddy, R., & Borthakur, A. (2007). Advances in magnetic resonance imaging for the assessment of degenerative disc disease of the lumbar spine. Seminars in Spine Surgery, 19(2), 65–71.

Dao, T. T., Pouletaut, P., Robert, L., Aufaure, P., Charleux, F., & Ho Ba Tho, M. C. (2013). Quantitative analysis of annulus fibrosus and nucleus pulposus derived from T2 mapping, diffusion-weighted and diffusion tensor MR imaging. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 1(3), 138–146.

Delp, S. L., Loan, J. P., Hoy, M. G., Zajac, F. E., Topp, E. L., & Rosen, J. M. (1990). An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Transactions on Biomedical Engineering, 37, 757–767.

Dao, T. T., Pouletaut, P., Gamet, D., & Ho Ba Tho, M. C. (2015). Real-time rehabilitation system of systems for monitoring the biomechanical feedbacks of the musculoskeletal system. Advances in Intelligent Systems and Computing, 326, 553–565.

de Zee, M., Dalstra, M., Cattaneo, P. M., Rasmussen, J., Svensson, P., & Melsen, B. (2007). Validation of a musculo-skeletal model of the mandible and its application to mandibular distraction osteogenesis. Journal of Biomechanics, 40(6), 1192–1201.

Reinbolt, J. A., Haftka, R. T., Chmielewski, T. L., & Fregly, B. J. (2007). A computational framework to predict post-treatment outcome for gait-related disorders. Medical Engineering & Physics, 30(4), 434–443.

Khoo, B. C. C., Goh, J. C. H., & Bose, K. (1995). A biomechanical model to determine lumbosacral loads during single stance phase in normal gait. Medical Engineering & Physics, 17(1), 27–35.

Han, K. S., Rohlmann, A., Zander, T., & Taylor, W. R. (2012). Lumbar spinal loads vary with body height and weight. Medical Engineering & Physics, 35(7), 969–977.

Hajihosseinali, M., Arjmand, N., Shirazi-Adl, A., Farahmand, F., & Ghiasi, M. S. (2014). A novel stability and kinematics-driven trunk biomechanical model to estimate muscle and spinal forces. Medical Engineering & Physics, 36(10), 1296–1304.

Desjardins, P., Plamondon, A., & Gagnon, M. (1998). Sensitivity analysis of segment models to estimate the net reaction moments at the L5/S1 joint in lifting. Medical Engineering & Physics, 20(2), 153–158.

Wu, J. Z., Sinsel, E. W., Gloekler, D. S., Wimer, B. M., Zhao, K. D., An, K. N., et al. (2011). Inverse dynamic analysis of the biomechanics of the thumb while pipetting: A case study. Medical Engineering & Physics, 34(6), 693–701.

Schiehlen, W. (2006). Computational dynamics: Theory and applications of multibody systems. European Journal of Mechanics-A/Solids, 25(4), 566–594.

Dao, T. T. (2015) Musculoskeletal simulation for assessment of effect of movement-based structure-modifying treatment strategies. Journal of Computational Medicine. Article ID 939480.

Scheys, L., Spaepen, A., Suetens, P., & Jonkers, I. (2008). Calculated moment-arm and muscle-tendon lengths during gait differ substantially using MR based versus rescaled generic lower-limb musculoskeletal models. Gait Posture, 28(4), 640–648.

Hicks, J. L., Delp, S. L., & Schwartz, M. H. (2011). Can biomechanical variables predict improvement in crouch gait? Gait and Posture, 34, 197–201.

Correa, T. A., Baker, R., Graham, H. K., & Pandy, M. G. (2011). Accuracy of generic musculoskeletal models in predicting the functional roles of muscles in human gait. Journal of Biomechanics, 44(11), 2096–2105.

Dao, T. T., & Ho Ba Tho, M. C. (2015). Assessment of parameter uncertainty in rigid musculoskeletal simulation using a probabilistic approach. Journal of Musculoskeletal Research, 18(3), 1–15.