Enhanced Efficiency of Dye-sensitized Solar Cells Using rGO@TiO2 Nanotube Hybrids
Tóm tắt
We established a novel strategy for the synthesis of reduced graphene oxide(rGO)@TiO2 nanotube hybrids using an 18 W UV-assisted photo-catalytic reduction method for utilization as photo-anode of dye-sensitized solar cells(DSSCs). The photo-conversion efficiency of DSSCs was significantly enhanced after the addition of rGO, and in addition, the photo-anode showed decreased internal resistance. Analysis of rGO@TiO2 hybrids by transmissions scanning electron microscopy(TEM), X-ray diffraction(XRD), Raman spectra, N2 adsorption and desorption, atomic force microscopy(AFM) and X-ray photoelectron spectroscopy(XPS) demonstrates that the rGO modified TiO2 nanotubes can increase the short-circuit current and the conversion efficiency of dye-sensitized solar cells. The efficiency is improved by almost two folds as much compared to those of the bare TiO2 nanotubes.