Enhanced Bioactivity of Streptomycin Bioconjugated Metal Nanoparticles Against Streptomycin Resistant Bacillus Sp

Nishanthi Ramasami1, Manikandan Dhayalan2, Malathi Selvaraj3, S.U. Mohammed Riyaz4, P. Palani5, Santiagu Stephen Irudayaraj6, Rajakrishnan Rajagopal7, Ahmed Alfarhan7, Antony Stalin8
1Department of Biotechnology, College of Science and Humanities, SRMIST, Kattankulathur, Tamil Nadu, 603203, India
2Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (Saveetha University), Chennai, TamilNadu, 600 077, India
3Department of Biotechnology, Sri Sankara Arts and Science College, Enathur, Kanchipuram, India
4PG & Research Department of Biotechnology, Islamiah College (Autonomous), Vaniyambadi, Tamil Nadu, 635752, India
5CAS in Botany, University of Madras, Guindy Campus, Chennai, Tamil Nadu, 600 025, India
6Department of Zoology, St. Xavier’s College, Maharo, Dumka, Jharkhand, 814 110, India
7Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box-2455, 11451, Riyadh, Saudi Arabia
8Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610 054, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Neu HC (1979) The crisis in antibiotic resistance. Science 257(5073):1064–1073. https://doi.org/10.1126/science.257.5073.1064

Craig RM, Alvaro SM (2004) The evolution of antibiotic resistance. Science 365(6458):1082–1083. https://doi.org/10.1126/science.aax3879

Gary VD, Kristopher PH, Holly KH, Paul RR, Stacy LC, Angela BB (2001) Antimicrobial resistance among clinical isolates of Streptococcus pneumoniae in the United States during 1999–2000, including a comparison of resistance rates since 1994–1995. Antimicrob Agents Chemother 45:1721–1729. https://doi.org/10.1128/AAC.45.6.1721-1729.2001

Neu HC, Gootz TD, Baron S (1996) Antimicrobial chemotherapy. In: Medical microbiology. University of Texas Medical Branch 1273. https://pubmed.ncbi.nlm.nih.gov/21413283/

Neha G, Camilla R, Rajeev S (2015) Pioneers in antimicrobial chemotherapy. J Assoc Physician India 63:90–91

Bakshi MS (2017) Nanotoxicity in systemic circulation and wound healing. Chem Res Toxicol 30:1253–1274. https://doi.org/10.1021/acs.chemrestox.7b00068

Pan D, Vargas-Morales O, Zern B, Anselmo AC, Gupta V, Zakrewsky M (2016) The effect of polymeric nanoparticles on biocompatibility of carrier red blood cells. PLoS ONE. https://doi.org/10.1371/journal.pone.0152074

Qiang Chen L, Fang L, Ling J, Zhi Ding C, Kang B, Zhi Huang C (2015) Nanotoxicity of silver nanoparticles to red blood cells: size dependent adsorption, uptake, and hemolytic activity. Chem Res Toxicol 28:501–509. https://doi.org/10.1021/tx500479m

Choi J, Reipa V, Hitchins VM, Goering PL, Malinauskas RA (2011) Physicochemical characterization and in vitro hemolysis evaluation of silver nanoparticles. Toxicol Sci 123:133–143. https://doi.org/10.1093/toxsci/kfr149

Fattah B, Arif H, Hamzah H (2022) Antimicrobial and antibiofilm activity of biosynthesized silver nanoparticles against beta-lactamase-resistant Enterococcus faecalis. Appl Biochem Biotechnol 194:2036–2046. https://doi.org/10.1007/s12010-022-03805-y

Godoy GM, Eckhard U, Delgado LM, de Roo-Puente YJD, Hoyos-Nogués M, Gil FJ, Roman AP (2021) Antibacterial approaches in tissue engineering using metal ions and nanoparticles: from mechanisms to applications. Bioact Mater 6(12):4470–4490. https://doi.org/10.1016/j.bioactmat.2021.04.033

Ajingi S, Jongruja N (2020) Antimicrobial peptide engineering: rational design, synthesis, and synergistic effect. Russ J Bioorg Chem 46:463–479. https://doi.org/10.1134/S1068162020040044

Nainu F, Permana AD, Juniarti N, Djide N, Anjani QK, Utami RN (2021) Antibiotics pharmaceutical approaches on antimicrobial resistance: prospects and challenges. Antibiotics 10:981. https://doi.org/10.3390/antibiotics10080981

Mohammed AA, Hegazy AE, Salah A (2023) Novelty of synergistic and cytotoxicity activities of silver nanoparticles produced by Lactobacillus acidophilus. Appl Nanosci 13:633–640. https://doi.org/10.1007/s13204-021-01878-50

Hussein HA, Syamsumir DF, Radzi SAM, Siong JYF, Zin NAM, Abdullah MA (2020) Phytochemical screening, metabolite profiling and enhanced antimicrobial activities of microalgal crude extracts in co-application with silver nanoparticle. Bioresour Bioprocess 7:39. https://doi.org/10.1186/s40643-020-00322-w1

Hashem AH, Shehabeldine AM, Ali OM, Salem SS (2022) Synthesis of chitosan-based gold nanoparticles: antimicrobial and wound-healing activities. Polymers 14(11):2293. https://doi.org/10.3390/polym14112293

Yu X, Li J, Mu D, Zhang H, Liu Q, Chen G (2021) Green synthesis and characterizations of silver nanoparticles with enhanced antibacterial properties by secondary metabolites of Bacillus subtilis (SDUM301120). Green Chem Lett Rev 14:189–202. https://doi.org/10.1080/17518253.2021.1894244

Nishanthi R, Malathi S, Palani P (2019) Green synthesis and characterization of bioinspired silver, gold and platinum nanoparticles and evaluation of their synergistic antibacterial activity after combining with different classes of antibiotics. Mater Sci Eng C 96:693–707. https://doi.org/10.1016/j.msec.2018.11.050

Chakraborty SP, Sahu SK, Mahapatra SK, Santra S, Bal M, Roy S et al (2010) Nanoconjugated vancomycin: new opportunities for the development of anti-VRSA agents. Nanotechnology 21(10):105103. https://doi.org/10.1088/0957-4484/21/10/105103

Manikandan D, Michael IJD, Manikandan A, Nagendra Gandhi N, Kathiravn K, Baykal A (2018) Biogenic synthesis, characterization of gold and silvernanoparticles from coleus forskohlii and their clinical importance. J Photochem Photobio B 183:251–257. https://doi.org/10.1016/j.jphotobiol.2018.04.042

Dalai S, Pakrashi S, Kumar RSS, Chandrasekaran N, Mukherjee A (2012) A comparative cytotoxicity study of TiO2 nanoparticles under light and dark conditions at low exposure concentrations. Toxicol Res 1:116–130. https://doi.org/10.1039/C2TX00012A

Malathi S, Prabhu P, Nishanthi R, Suresh BR, Sriman NS, Palani P (2014) Highly potential antifungal activity of quantum-sized silver nanoparticles against candida albicans. Appl Biochem Biotechnol 173:55–66. https://doi.org/10.1007/s12010-014-0782-9

Tängdén T (2014) Combination antibiotic therapy for multidrug-resistant Gram-negative bacteria. Upsala J Med Sci Informa Healthcare 119:149–153. https://doi.org/10.3109/03009734.2014.899279

Paul M, Lador A, Grozinsky-Glasberg S, Leibovici L (2014) Beta lactam antibiotic monotherapy versus beta lactam-aminoglycoside antibiotic combination therapy for sepsis. Cochrane Database Syst Rev 7:CD003344. https://doi.org/10.1002/14651858.CD003344.pub3

MbaNweze IEEI (2021) Nanoparticles as therapeutic options for treating multidrug-resistant bacteria: research progress, challenges, and prospects. World J Microbiol Biotechnol 37:3. https://doi.org/10.1007/s11274-021-03070-x

Rahuman HBH, Dhandapani R, Palanivel V, Thangavelu S, Paramasivam R, Muthupandian S (2021) Bioengineered phytomolecules-capped silver nanoparticles using Carissa carandas leaf extract to embed on to urinary catheter to combat UTI pathogens. PLoS ONE 16:10256748. https://doi.org/10.1371/journal.pone.0256748

Campo-Beleño C, Villamizar-Gallardo RA, López-Jácome LE, González EE, Muñoz-Carranza S, Franco B (2022) Biologically synthesized silver nanoparticles as potent antibacterial effective against multidrug-resistant Pseudomonas aeruginosa. Lett Appl Microbiol 75:680–688. https://doi.org/10.1111/lam.13759

Shanmugam J, Manikandan D, Mohammed Riyaz SU, Mayakkannan G, Moonis AK, Jesus SG, Antonio CS (2022) Green synthesis of silver nanoparticles using allium cepa var. aggregatum natural extract: antibacterial and cytotoxic properties. Nanomaterials 12:1725. https://doi.org/10.3390/nano12101725

Lambadi PR, Sharma TK, Kumar P, Vasnani P, Thalluri SM, Bisht N, Pathania R, Navani NK (2015) Facile biofunctionalization of silver nanoparticles for enhanced antibacterial properties, endotoxin removal, and biofilm control. Int J Nanomedicine 10:2155–2171. https://doi.org/10.2147/IJN.S72923

Nirmala Grace A, Pandian K (2007) Antibacterial efficacy of aminoglycosidic antibiotics protected gold nanoparticles—a brief study. Colloids Surf A Physicochem Eng Asp 297:63–70. https://doi.org/10.1016/j.colsurfa.2006.10.024

Megha Shyam M, Afrasim Moin R, Medishetti KR, Raichur AM, Kumar BRP (2015) Dual drug conjugate loaded nanoparticles for the treatment of cancer. Curr Drug Deliv 12:782–794. https://doi.org/10.2174/1567201812666150507120452

Ganeshkumar M, Sathishkumar M, Ponrasu T, Dinesh MG, Suguna L (2013) Spontaneous ultra fast synthesis of gold nanoparticles using Punica granatum for cancer targeted drug delivery. Colloids Surf B Biointerfaces 106:208–216. https://doi.org/10.1016/j.colsurfb.2013.01.035

Shruthi TS, Meghana MR, Medha MU, Sanjana S, Navya PN, Kumar Daima H (2019) Streptomycin functionalization on silver nanoparticles for improved antibacterial activity. Mater Today Proc 10:8–15. https://doi.org/10.1016/j.matpr.2019.02.181

Debalina B, Saha B, Mukherjee A, Santra CR (2012) Gold nanoparticles conjugated antibiotics: stability and functional evaluation. Nanosci Nanotechnol 2:14–21. https://doi.org/10.5923/j.nn.20120202.04

Rai A, Prabhune A, Perry CC (2010) Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings. J Mater Chem 20(32):6789–6798. https://doi.org/10.1039/C0JM00817F

Renuga Devi TS, Gayathri S (2010) FTIR and FT-Raman spectral analysis of Paclitaxel drugs. Int J Pharm Sci Rev Res 2:106–110

Mandell, Douglas Benett’s (1995) Principles and pratice of infectious diseases. In: The clinician and the microbiology laboratory. Churchille, Livingston, Philadelphia, pp 169–99. https://doi.org/10.1016/S1473-3099(10)70089-X

Das B, Dash SK, Mandal D, Ghosh T, Chattopadhyay S, Tripathy S et al (2017) Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage. Arab J Chem 10:862–876. https://doi.org/10.1016/j.arabjc.2015.08.008

Swathy JR, Sankar MU, Chaudhary A, Aigal S, Pradeep T, States U (2014) Antimicrobial silver: an unprecedented anion effect. Sci Rep 4:1–5. https://doi.org/10.1038/srep07161

Dutta T, Chowdhury SK, Ghosh NN, Chattopadhyay AP, Das M, Mandal V (2022) Green synthesis of antimicrobial silver nanoparticles using fruit extract of Glycosmis pentaphylla and its theoretical explanations. J Mol Struct 1247:131361. https://doi.org/10.1016/j.molstruc.2021.131361

Eltarahony M, Ibrahim A, El-Shall H, Ibrahim E, Althobaiti F, Fayad E (2021) Antibacterial, antifungal and antibiofilm activities of silver nanoparticles supported by crude bioactive metabolites of bionanofactories isolated from lake mariout. Molecules 26(10):3027. https://doi.org/10.3390/molecules2610302

Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346–2353. https://doi.org/10.1088/0957-4484/16/10/059

AshaRani PV, Mun GLK, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACSNano 3:279–290. https://doi.org/10.1021/nn800596w

Barik TK, Sahu B, Swain V (2008) Nanosilica—from medicine to pest control. Parasitol Res 103:253–258. https://doi.org/10.1007/s00436-008-0975-7.45

Lin YS, Haynes CL (2010) Impacts of mesoporous silica nanoparticle size, pore ordering, and pore integrity on hemolytic activity. J Am Chem Soc 132(13):4834–4842. https://doi.org/10.1021/ja910846q

Li S, Zhu R, Zhu H, Xue M, Sun X, de Yao S et al (2008) Nanotoxicity of TiO 2 nanoparticles to erythrocyte in vitro. Food Chem Toxicol 46:3626–3631. https://doi.org/10.1016/j.fct.2008.09.012

Kim D, El-Shall H, Dennis D, Morey T (2005) Interaction of PLGA nanoparticles with human blood constituents. Colloids Surf B Biointerfaces 40:83–91. https://doi.org/10.1016/j.colsurfb.2004.05.007

Praveen KK, Paul W, Sharma PC (2011) Green synthesis of gold nanoparticles with Zingiber officinale extract: characterization and blood compatibility. Process Biochem 46(10):2007–2013. https://doi.org/10.1016/j.procbio.2011.07.011

Sen IK, Kumar A, Chakraborti S, Dey B (2013) Green synthesis of silver nanoparticles using glucan from mushroom and study of antibacterial activity. Int J Biol Macromol 62:439–449. https://doi.org/10.1016/j.ijbiomac.2013.09.019

Shiny PJ, Mukherjee A, Chandrasekaran N (2014) Haemocompatibility assessment of synthesised platinum nanoparticles and its implication in biology. Bioprocess Biosyst Eng 37:991–997. https://doi.org/10.1007/s00449-013-1069-1

Raja A, Salique SM, Gajalakshmi P, James A (2016) Antibacterial and hemolytic activity nanoparticles from catharanthus roseus green. Int J Pharmaceut Sci Nanotechnol 9:3112–3117. https://doi.org/10.37285/ijpsn.2016.9.1.6

Srinath BS, Namratha K, Byrappa K (2017) Eco-friendly synthesis of gold nanoparticles by gold mine bacteria Brevibacillus formosus and their antibacterial and biocompatible studies. IOSR J Pharm 7:53–60

Foo YY, Periasamy V, Kiew LV, Kumar GG, Malek SNA (2017) Curcuma mangga-mediated synthesis of gold nanoparticles: characterization, stability, cytotoxicity, and blood compatibility. Nanomaterials 7:123. https://doi.org/10.3390/nano7060123

Jayashree S, Aruna Sharmili S, Roshitha S, Balaji R, Mahendrakumar M, Mohammed Riyaz SU, Manikandan D, Antonio CS, Jesus SG (2023) Green preparation of bract extract(musa acuminate) doped magnesium oxide nanoparticles and their bio efficacy. Appl Organometall Chem Appl Organomet Chem 37:e7063. https://doi.org/10.1002/aoc.7063

Asharani PV, Sethu S, Vadukumpully S, Zhong S, Lim CT, Hande MP, Suresh V (2010) Investigations on the structural damage in human erythrocytes exposed to silver, gold, and platinum nanoparticles. Adv Funct Mater 20:1233–1242. https://doi.org/10.1002/adfm.200901846

Goodman CM, McCusker CD, Yilmaz T, Rotello VM (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 15:897–900. https://doi.org/10.1021/bc049951i