Engineering the biological conversion of formate into crotonate in Cupriavidus necator
Tài liệu tham khảo
Alagesan, 2018, Functional genetic elements for controlling gene expression in Cupriavidus necator H16, Appl. Environ. Microbiol., 84, 1, 10.1128/AEM.00878-18
Angov, 2011, Adjustment of codon usage frequencies by codon harmonization improves protein expression and folding, 1
Aragao, 1996, Maintaining a controlled residual growth capacity increases the production of polyhydroxyalkanoate copolymers by Alcaligenes eutrophus, Biotechnol. Lett., 18
Aslan, 2017, Holistic bioengineering: rewiring central metabolism for enhanced bioproduction, Biochem. J., 474, 3935, 10.1042/BCJ20170377
Bang, 2020, Escherichia coli is engineered to grow on CO2 and formic acid, Nat Microbiol, 5, 1459, 10.1038/s41564-020-00793-9
Bar-Even, 2011, The moderately efficient enzyme: evolutionary and physicochemical trends shaping enzyme parameters, Biochemistry, 50, 4402, 10.1021/bi2002289
Bar-Even, 2013, Design and analysis of metabolic pathways supporting formatotrophic growth for electricity-dependent cultivation of microbes, Biochim. Biophys. Acta Bioenerg., 1827, 1039, 10.1016/j.bbabio.2012.10.013
Becker, 2015, Top value platform chemicals: bio-based production of organic acids, Curr. Opin. Biotechnol., 36, 168, 10.1016/j.copbio.2015.08.022
Brigham, 2019, Perspectives for the biotechnological production of biofuels from CO2 and H2 using Ralstonia eutropha and other ‘Knallgas’ bacteria, Appl. Microbiol. Biotechnol., 103, 2113, 10.1007/s00253-019-09636-y
Brigham, 2010, Elucidation of β-oxidation pathways in Ralstonia eutropha H16 by examination of global gene expression, J. Bacteriol., 192, 5454, 10.1128/JB.00493-10
Bruinsma, 2022, Paving the way for synthetic C1- metabolism in Pseudomonas putida through the reductive glycine pathway, bioRxiv
Budde, 2010, Roles of multiple acetoacetyl coenzyme A reductases in polyhydroxybutyrate biosynthesis in Ralstonia eutropha H16, J. Bacteriol., 192, 5319, 10.1128/JB.00207-10
Calvey, 2023, Improving growth of Cupriavidus necator H16 on formate using adaptive laboratory evolution-informed engineering, Metab. Eng., 75, 78, 10.1016/j.ymben.2022.10.016
Cho, 2016, Formatotrophic production of poly-β-hydroxybutyric Acid (PHB) from Methylobacterium sp. using formate as the sole carbon and energy source, Korean Chemical Engineering Research, 54, 719, 10.9713/kcer.2016.54.5.719
Claassens, 2017, Improving heterologous membrane protein production in Escherichia coli by combining transcriptional tuning and codon usage algorithms, PLoS One, 12, 10.1371/journal.pone.0184355
Claassens, 2019, Making quantitative sense of electromicrobial production, Nat Catal, 2, 437, 10.1038/s41929-019-0272-0
Claassens, 2020, Replacing the Calvin cycle with the reductive glycine pathway in Cupriavidus necator, Metab. Eng., 62, 30, 10.1016/j.ymben.2020.08.004
Cotton, 2020, Renewable methanol and formate as microbial feedstocks, Curr. Opin. Biotechnol., 10.1016/j.copbio.2019.10.002
Crépin, 2016, Metabolic engineering of Cupriavidus necator for heterotrophic and autotrophic alka(e)ne production, Metab. Eng., 37, 92, 10.1016/j.ymben.2016.05.002
Dellomonaco, 2011, Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals, Nature, 476, 355, 10.1038/nature10333
Dijkhuizen, 1985
Dronsella, 2022, Engineered synthetic one-carbon fixation exceeds yield of the Calvin Cycle, bioRxiv
Ferretti, 2001
Flamholz, 2012, EQuilibrator - the biochemical thermodynamics calculator, Nucleic Acids Res., 40, 770, 10.1093/nar/gkr874
Garrigues, 2020, Isopropanol production from carbon dioxide in Cupriavidus necator in a pressurized bioreactor, Nat. Biotechnol., 56, 16
Gascoyne, 2021, Engineering Cupriavidus necator H16 for the autotrophic production of (R)-1,3-butanediol, Metab. Eng., 67, 262, 10.1016/j.ymben.2021.06.010
Gentz, 1985, Promoters recognized by Escherichia coli RNA polymerase selected by function: highly efficient promoters from bacteriophage T5, J. Bacteriol., 164, 70, 10.1128/jb.164.1.70-77.1985
Gleizer, 2019, Conversion of Escherichia coli to generate all biomass carbon from CO2, Cell, 179, 1255, 10.1016/j.cell.2019.11.009
Grousseau, 2012
Grousseau, 2014, Isopropanol production with engineered Cupriavidus necator as bioproduction platform, Appl. Microbiol. Biotechnol., 98, 4277, 10.1007/s00253-014-5591-0
Grunwald, 2015, Kinetic and stoichiometric characterization of organoautotrophic growth of Ralstonia eutropha on formic acid in fed-batch and continuous cultures, Microb. Biotechnol., 8, 155, 10.1111/1751-7915.12149
Hanko, 2022, Biosensor-informed engineering of Cupriavidus necator H16 for autotrophic D-mannitol production, Metab. Eng., 72, 24, 10.1016/j.ymben.2022.02.003
Härrer, 2021, Production of acetoin from renewable resources under heterotrophic and mixotrophic conditions, Bioresour. Technol., 329, 10.1016/j.biortech.2021.124866
Hegner, 2020, Coupled electrochemical and microbial catalysis for the production of polymer bricks, ChemSusChem, 13, 5295, 10.1002/cssc.202001272
Huo, 2011
Insomphun, 2014, Modification of β-oxidation pathway in Ralstonia eutropha for production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from soybean oil Chayatip, J. Biosci. Bioeng., 117, 184, 10.1016/j.jbiosc.2013.07.016
Jahn, 2021, Protein allocation and utilization in the versatile chemolithoautotroph cupriavidus necator, Elife, 10, 1, 10.7554/eLife.69019
Janasch, 2022, Thermodynamic limitations of PHB production from formate and fructose in Cupriavidus necator, Metab. Eng., 73, 256, 10.1016/j.ymben.2022.08.005
Jullesson, 2015, Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals, Biotechnol. Adv., 10.1016/j.biotechadv.2015.02.011
Kanehisa, 2000, KEGG: Kyoto Encyclopedia of genes and genomes, Nucleic Acids Res., 28, 27, 10.1093/nar/28.1.27
Kawashima, 2012, Characterization and functional analyses of R-specific enoyl coenzyme a hydratases in polyhydroxyalkanoate-producing Ralstonia eutropha, Appl. Environ. Microbiol., 78, 493, 10.1128/AEM.06937-11
Kim, 2016, Engineering Escherichia coli for the synthesis of short- and medium-chain α,β-unsaturated carboxylic acids, Metab. Eng., 36, 90, 10.1016/j.ymben.2016.03.005
Kim, 2020, Growth of E. coli on formate and methanol via the reductive glycine pathway, Nat. Chem. Biol., 16, 538, 10.1038/s41589-020-0473-5
Kim, 2023, Optimizing E. coli as a formatotrophic platform for bioproduction via the reductive glycine pathway, Frontiers in Biotechnology and Bioengineering, 10.3389/fbioe.2023.1091899
Krieg, 2018, CO2 to terpenes: autotrophic and electroautotrophic α-humulene production with cupriavidus necator, Angew. Chem. Int. Ed., 57, 1879, 10.1002/anie.201711302
Ku, 2018, A balanced ATP driving force module for enhancing photosynthetic biosynthesis of 3-hydroxybutyrate from CO 2, Metab. Eng., 46, 35, 10.1016/j.ymben.2018.02.004
Lan, 2012, ATP drives direct photosynthetic production of 1-butanol in cyanobacteria, Proc. Natl. Acad. Sci. U. S. A., 109, 6018, 10.1073/pnas.1200074109
Lee, 2015, Systems strategies for developing industrial microbial strains, Nat. Biotechnol., 33, 1061, 10.1038/nbt.3365
Lee, 2006, Proteomic examination of Ralstonia eutropha in cellular responses to formic acid, Proteomics, 6, 4259, 10.1002/pmic.200500824
Li, 2012, Integrated electromicrobial conversion of CO2 to higher alcohols, Science, 1979, 1596, 10.1126/science.1217643
Li, 2020, Engineering the Calvin–Benson–Bassham cycle and hydrogen utilization pathway of Ralstonia eutropha for improved autotrophic growth and polyhydroxybutyrate production, Microb. Cell Factories, 19, 1, 10.1186/s12934-020-01494-y
Li, 2021, Microbial engineering for the production of C2-C6 organic acids, Nat. Prod. Rep., 38, 1518, 10.1039/D0NP00062K
Liu, 2015, Biosynthesis of butenoic acid through fatty acid biosynthesis pathway in Escherichia coli, Appl. Microbiol. Biotechnol., 99, 1795, 10.1007/s00253-014-6233-2
Liu, 2016, Water splitting–biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis, Science, 1979, 1210, 10.1126/science.aaf5039
Löwe, 2021, Threalose production in Cupriavidus necator from CO2 and hydrogen gas, Bioresour. Technol., 319, 10.1016/j.biortech.2020.124169
Lütte, 2012, Autotrophic production of stable-isotope-labeled arginine in Ralstonia eutropha strain H16, Appl. Environ. Microbiol., 78, 7884, 10.1128/AEM.01972-12
Mamat, 2014, Bio-based production of crotonic acid by pyrolysis of poly(3-hydroxybutyrate) inclusions, J. Clean. Prod., 83, 463, 10.1016/j.jclepro.2014.07.064
Marc, 2017, Over expression of GroESL in Cupriavidus necator for heterotrophic and autotrophic isopropanol production, Metab. Eng., 42, 74, 10.1016/j.ymben.2017.05.007
Matsumoto, 2013, Directed evolution and structural analysis of nadph-dependent acetoacetyl coenzyme A(acetoacetyl-CoA) reductase from Ralstonia eutropha reveals two mutations responsible for enhanced kinetics, Appl. Environ. Microbiol., 79, 6134, 10.1128/AEM.01768-13
McMahon, 2014, Functional screening and in vitro analysis reveal thioesterases with enhanced substrate specificity profiles that improve short-chain fatty acid production in Escherichia coli, Appl. Environ. Microbiol., 80, 1042, 10.1128/AEM.03303-13
Meadows, 2016, Rewriting yeast central carbon metabolism for industrial isoprenoid production, Nature, 537, 10.1038/nature19769
Milker, 2021, First time β-farnesene production by the versatile bacterium Cupriavidus necator, Microb. Cell Factories, 20, 1, 10.1186/s12934-021-01562-x
Milker, 2021, Gram-scale production of the sesquiterpene α-humulene with Cupriavidus necator, Biotechnol. Bioeng., 118, 2694, 10.1002/bit.27788
Mougiakos, 2019, Efficient Cas9-based genome editing of Rhodobacter sphaeroides for metabolic engineering, Microb. Cell Factories, 18, 1, 10.1186/s12934-019-1255-1
Mozumder, 2014, A robust fed-batch feeding strategy independent of the carbon source for optimal polyhydroxybutyrate production, Process Biochem., 49, 365, 10.1016/j.procbio.2013.12.004
Müller, 2013, Engineering of Ralstonia eutropha H16 for autotrophic and heterotrophic production of methyl ketones, Appl. Environ. Microbiol., 79, 4433, 10.1128/AEM.00973-13
Nielsen, 2022, Innovation trends in industrial biotechnology, Trends Biotechnol., 10.1016/j.tibtech.2022.03.007
Niks, 2016, Spectroscopic and kinetic properties of the molybdenum-containing, NAD+-dependent formate dehydrogenase from Ralstonia eutropha, J. Biol. Chem., 291, 1162, 10.1074/jbc.M115.688457
Okamura, 2010, Unprecedented acetoacetyl-coenzyme A synthesizing enzyme of the thiolase superfamily involved in the mevalonate pathway, Proc. Natl. Acad. Sci. U. S. A., 107, 11265, 10.1073/pnas.1000532107
Orsi, 2022, Optimizing microbial networks through metabolic bypasses, Biotechnol. Adv., 60, 10.1016/j.biotechadv.2022.108035
Pan, 2021, Synthetic biology toolkit for engineering Cupriviadus necator H16 as a platform for CO2 valorization, Biotechnol. Biofuels, 10.1186/s13068-021-02063-0
Panich, 2021, Metabolic engineering of cupriavidus necator H16 for sustainable biofuels from CO2, Trends Biotechnol., 10.1016/j.tibtech.2021.01.001
Paulino, 2021, Recent advances in the microbial and enzymatic production of aroma compounds, Curr. Opin. Food Sci., 10.1016/j.cofs.2020.09.010
Pavan, 2022, Advances in systems metabolic engineering of autotrophic carbon oxide-fixing biocatalysts towards a circular economy, Metab. Eng., 71, 117, 10.1016/j.ymben.2022.01.015
Pohlmann, 2006, Genome sequence of the bioplastic-producing “Knallgas” bacterium Ralstonia eutropha H16, Nat. Biotechnol., 24, 1257, 10.1038/nbt1244
Porter, 2011, Genome sequence of Rhodobacter sphaeroides strain WS8N, J. Bacteriol., 193, 4027, 10.1128/JB.05257-11
Raberg, 2018, Ralstonia eutropha H16 in progress: applications beside PHAs and establishment as production platform by advanced genetic tools, Crit. Rev. Biotechnol., 10.1080/07388551.2017.1369933
Reiser, 2000, Characterization and cloning of an (R)-specific trans-2,3-enoylacyl-CoA hydratase from Rhodospirillum rubrum and use of this enzyme for PHA production in Escherichia coli, Appl. Microbiol. Biotechnol., 53, 209, 10.1007/s002530050010
Riedel, 2014, Lipid and fatty acid metabolism in Ralstonia eutropha: relevance for the biotechnological production of value-added products, Appl. Microbiol. Biotechnol., 10.1007/s00253-013-5430-8
Rowaihi, 2018, Poly(3-hydroxybutyrate) production in an integrated electromicrobial setup: investigation under stress-inducing conditions, PLoS One, 13, 10.1371/journal.pone.0196079
Satanowski, 2020, A one‐carbon path for fixing CO 2, EMBO Rep., 21, 1, 10.15252/embr.202050273
Sauer, 2008, Microbial production of organic acids: expanding the markets, Trends Biotechnol., 10.1016/j.tibtech.2007.11.006
Schada Von Borzyskowski, 2018, Replacing the ethylmalonyl-CoA pathway with the glyoxylate shunt provides metabolic flexibility in the central carbon metabolism of Methylobacterium extorquens AM1, ACS Synth. Biol., 7, 86, 10.1021/acssynbio.7b00229
Schempp, 2018, Microbial cell factories for the production of terpenoid flavor and fragrance compounds, J. Agric. Food Chem., 66, 2247, 10.1021/acs.jafc.7b00473
Segawa, 2019, Two NADH-dependent (S)-3-hydroxyacyl-CoA dehydrogenases from polyhydroxyalkanoate-producing Ralstonia eutropha, J. Biosci. Bioeng., 127, 294, 10.1016/j.jbiosc.2018.08.009
Sohn, 2021, Chemoautotroph Cupriavidus necator as a potential game-changer for global warming and plastic waste problem: a review, Bioresour. Technol., 340, 10.1016/j.biortech.2021.125693
Stöckl, 2020, From CO2 to bioplastic – coupling the electrochemical CO2 reduction with a microbial product generation by drop-in electrolysis, ChemSusChem, 13, 4086, 10.1002/cssc.202001235
Stöckl, 2022, Coupling electrochemical CO2 reduction to microbial product generation – identification of the gaps and opportunities, Curr. Opin. Biotechnol., 74, 154, 10.1016/j.copbio.2021.11.007
Sydow, 2017, Expanding the genetic tool box for Cupriavidus necator by a stabilized L-rhamnose inducible plasmid system, J. Biotechnol., 263, 1, 10.1016/j.jbiotec.2017.10.002
Tang, 2020, Metabolic engineering of Cupriavidus necator H16 for improved chemoautotrophic growth and PHB production under oxygen-limiting conditions, Metab. Eng., 61, 11, 10.1016/j.ymben.2020.04.009
Thoma, 2009, An improved Escherichia coli donor strain for diparental mating, FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Lett., 294, 127, 10.1111/j.1574-6968.2009.01556.x
Turlin, 2022, Integrated rational and evolutionary engineering of genome-reduced Pseudomonas putida strains promotes synthetic formate assimilation, Metab. Eng., 74, 191, 10.1016/j.ymben.2022.10.008
van Wegen, 2001, Metabolic and kinetic analysis of poly(3-Hydroxybutyrate) production by recombinant Escherichia coli, Biotechnol. Bioeng., 74, 70, 10.1002/bit.1096
Volodina, 2014, (S)-3-hydroxyacyl-CoA dehydrogenase/enoyl-CoA hydratase (FadB’) from fatty acid degradation operon of Ralstonia eutropha H16, Amb. Express, 4, 1, 10.1186/s13568-014-0069-0
Volodina, 2016, Engineering the heterotrophic carbon sources utilization range of Ralstonia eutropha H16 for applications in biotechnology, Crit. Rev. Biotechnol., 10.3109/07388551.2015.1079698
Wang, 2019, Metabolic engineering of Yarrowia lipolytica for the biosynthesis of crotonic acid, Bioresour. Technol., 287, 10.1016/j.biortech.2019.121484
Wang, 2020, Synthetic methylotrophy: a practical solution for methanol-based biomanufacturing, Trends Biotechnol., 10.1016/j.tibtech.2019.12.013
Wang, 2022, Direct conversion of carbon dioxide to glucose using metabolically engineered Cupriavidus necator, Bioresour. Technol., 362, 10.1016/j.biortech.2022.127806
Wang, 2023, Engineering Cupriavidus necator H16 for heterotrophic and autotrophic production of myo-inositol, Bioresour. Technol., 368, 10.1016/j.biortech.2022.128321
Wenk, 2020, An “energy-auxotroph” Escherichia coli provides an in vivo platform for assessing NADH regeneration systems, Biotechnol. Bioeng., 117, 3422, 10.1002/bit.27490
Wenk, 2022, Synthetic carbon fixation via the autocatalytic serine threonine cycle, bioRxiv
Windhorst, 2019, Efficient biochemical production of acetoin from carbon dioxide using Cupriavidus necator H16, Biotechnol. Biofuels, 12, 163, 10.1186/s13068-019-1512-x
Wu, 2022, Efficient production of lycopene from CO2 via microbial electrosynthesis, Chem. Eng. J., 430, 10.1016/j.cej.2021.132943
Xiong, 2018, Genome editing of Ralstonia eutropha using an electroporation-based CRISPR-Cas9 technique, Biotechnol. Biofuels, 11, 172, 10.1186/s13068-018-1170-4
Yang, 2020, Performance and long-term stability of CO2 conversion to formic acid using a three-compartment electrolyzer design, J. CO2 Util., 42, 10.1016/j.jcou.2020.101349
Yim, 2011, Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol, Nat. Chem. Biol., 7, 445, 10.1038/nchembio.580
Yishai, 2016, The formate bio-economy, Curr. Opin. Chem. Biol., 35, 1, 10.1016/j.cbpa.2016.07.005
Zheng, 2021, Copper-catalysed exclusive CO2 to pure formic acid conversion via single-atom alloying, Nat. Nanotechnol., 16, 1386, 10.1038/s41565-021-00974-5
Zhu, 2020, Engineering unnatural methylotrophic cell factories for methanol-based biomanufacturing: challenges and opportunities, Biotechnol. Adv., 10.1016/j.biotechadv.2019.107467