Engineering the biological conversion of formate into crotonate in Cupriavidus necator

Metabolic Engineering - Tập 79 - Trang 49-65 - 2023
Florent Collas1, Beau B. Dronsella2, Armin Kubis1, Karin Schann3, Sebastian Binder1, Nils Arto1, Nico J. Claassens4, Frank Kensy1, Enrico Orsi2
1b.fab GmbH, Cologne, Germany
2Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
3Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
4Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands

Tài liệu tham khảo

Alagesan, 2018, Functional genetic elements for controlling gene expression in Cupriavidus necator H16, Appl. Environ. Microbiol., 84, 1, 10.1128/AEM.00878-18 Angov, 2011, Adjustment of codon usage frequencies by codon harmonization improves protein expression and folding, 1 Aragao, 1996, Maintaining a controlled residual growth capacity increases the production of polyhydroxyalkanoate copolymers by Alcaligenes eutrophus, Biotechnol. Lett., 18 Aslan, 2017, Holistic bioengineering: rewiring central metabolism for enhanced bioproduction, Biochem. J., 474, 3935, 10.1042/BCJ20170377 Bang, 2020, Escherichia coli is engineered to grow on CO2 and formic acid, Nat Microbiol, 5, 1459, 10.1038/s41564-020-00793-9 Bar-Even, 2011, The moderately efficient enzyme: evolutionary and physicochemical trends shaping enzyme parameters, Biochemistry, 50, 4402, 10.1021/bi2002289 Bar-Even, 2013, Design and analysis of metabolic pathways supporting formatotrophic growth for electricity-dependent cultivation of microbes, Biochim. Biophys. Acta Bioenerg., 1827, 1039, 10.1016/j.bbabio.2012.10.013 Becker, 2015, Top value platform chemicals: bio-based production of organic acids, Curr. Opin. Biotechnol., 36, 168, 10.1016/j.copbio.2015.08.022 Brigham, 2019, Perspectives for the biotechnological production of biofuels from CO2 and H2 using Ralstonia eutropha and other ‘Knallgas’ bacteria, Appl. Microbiol. Biotechnol., 103, 2113, 10.1007/s00253-019-09636-y Brigham, 2010, Elucidation of β-oxidation pathways in Ralstonia eutropha H16 by examination of global gene expression, J. Bacteriol., 192, 5454, 10.1128/JB.00493-10 Bruinsma, 2022, Paving the way for synthetic C1- metabolism in Pseudomonas putida through the reductive glycine pathway, bioRxiv Budde, 2010, Roles of multiple acetoacetyl coenzyme A reductases in polyhydroxybutyrate biosynthesis in Ralstonia eutropha H16, J. Bacteriol., 192, 5319, 10.1128/JB.00207-10 Calvey, 2023, Improving growth of Cupriavidus necator H16 on formate using adaptive laboratory evolution-informed engineering, Metab. Eng., 75, 78, 10.1016/j.ymben.2022.10.016 Cho, 2016, Formatotrophic production of poly-β-hydroxybutyric Acid (PHB) from Methylobacterium sp. using formate as the sole carbon and energy source, Korean Chemical Engineering Research, 54, 719, 10.9713/kcer.2016.54.5.719 Claassens, 2017, Improving heterologous membrane protein production in Escherichia coli by combining transcriptional tuning and codon usage algorithms, PLoS One, 12, 10.1371/journal.pone.0184355 Claassens, 2019, Making quantitative sense of electromicrobial production, Nat Catal, 2, 437, 10.1038/s41929-019-0272-0 Claassens, 2020, Replacing the Calvin cycle with the reductive glycine pathway in Cupriavidus necator, Metab. Eng., 62, 30, 10.1016/j.ymben.2020.08.004 Cotton, 2020, Renewable methanol and formate as microbial feedstocks, Curr. Opin. Biotechnol., 10.1016/j.copbio.2019.10.002 Crépin, 2016, Metabolic engineering of Cupriavidus necator for heterotrophic and autotrophic alka(e)ne production, Metab. Eng., 37, 92, 10.1016/j.ymben.2016.05.002 Dellomonaco, 2011, Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals, Nature, 476, 355, 10.1038/nature10333 Dijkhuizen, 1985 Dronsella, 2022, Engineered synthetic one-carbon fixation exceeds yield of the Calvin Cycle, bioRxiv Ferretti, 2001 Flamholz, 2012, EQuilibrator - the biochemical thermodynamics calculator, Nucleic Acids Res., 40, 770, 10.1093/nar/gkr874 Garrigues, 2020, Isopropanol production from carbon dioxide in Cupriavidus necator in a pressurized bioreactor, Nat. Biotechnol., 56, 16 Gascoyne, 2021, Engineering Cupriavidus necator H16 for the autotrophic production of (R)-1,3-butanediol, Metab. Eng., 67, 262, 10.1016/j.ymben.2021.06.010 Gentz, 1985, Promoters recognized by Escherichia coli RNA polymerase selected by function: highly efficient promoters from bacteriophage T5, J. Bacteriol., 164, 70, 10.1128/jb.164.1.70-77.1985 Gleizer, 2019, Conversion of Escherichia coli to generate all biomass carbon from CO2, Cell, 179, 1255, 10.1016/j.cell.2019.11.009 Grousseau, 2012 Grousseau, 2014, Isopropanol production with engineered Cupriavidus necator as bioproduction platform, Appl. Microbiol. Biotechnol., 98, 4277, 10.1007/s00253-014-5591-0 Grunwald, 2015, Kinetic and stoichiometric characterization of organoautotrophic growth of Ralstonia eutropha on formic acid in fed-batch and continuous cultures, Microb. Biotechnol., 8, 155, 10.1111/1751-7915.12149 Hanko, 2022, Biosensor-informed engineering of Cupriavidus necator H16 for autotrophic D-mannitol production, Metab. Eng., 72, 24, 10.1016/j.ymben.2022.02.003 Härrer, 2021, Production of acetoin from renewable resources under heterotrophic and mixotrophic conditions, Bioresour. Technol., 329, 10.1016/j.biortech.2021.124866 Hegner, 2020, Coupled electrochemical and microbial catalysis for the production of polymer bricks, ChemSusChem, 13, 5295, 10.1002/cssc.202001272 Huo, 2011 Insomphun, 2014, Modification of β-oxidation pathway in Ralstonia eutropha for production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from soybean oil Chayatip, J. Biosci. Bioeng., 117, 184, 10.1016/j.jbiosc.2013.07.016 Jahn, 2021, Protein allocation and utilization in the versatile chemolithoautotroph cupriavidus necator, Elife, 10, 1, 10.7554/eLife.69019 Janasch, 2022, Thermodynamic limitations of PHB production from formate and fructose in Cupriavidus necator, Metab. Eng., 73, 256, 10.1016/j.ymben.2022.08.005 Jullesson, 2015, Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals, Biotechnol. Adv., 10.1016/j.biotechadv.2015.02.011 Kanehisa, 2000, KEGG: Kyoto Encyclopedia of genes and genomes, Nucleic Acids Res., 28, 27, 10.1093/nar/28.1.27 Kawashima, 2012, Characterization and functional analyses of R-specific enoyl coenzyme a hydratases in polyhydroxyalkanoate-producing Ralstonia eutropha, Appl. Environ. Microbiol., 78, 493, 10.1128/AEM.06937-11 Kim, 2016, Engineering Escherichia coli for the synthesis of short- and medium-chain α,β-unsaturated carboxylic acids, Metab. Eng., 36, 90, 10.1016/j.ymben.2016.03.005 Kim, 2020, Growth of E. coli on formate and methanol via the reductive glycine pathway, Nat. Chem. Biol., 16, 538, 10.1038/s41589-020-0473-5 Kim, 2023, Optimizing E. coli as a formatotrophic platform for bioproduction via the reductive glycine pathway, Frontiers in Biotechnology and Bioengineering, 10.3389/fbioe.2023.1091899 Krieg, 2018, CO2 to terpenes: autotrophic and electroautotrophic α-humulene production with cupriavidus necator, Angew. Chem. Int. Ed., 57, 1879, 10.1002/anie.201711302 Ku, 2018, A balanced ATP driving force module for enhancing photosynthetic biosynthesis of 3-hydroxybutyrate from CO 2, Metab. Eng., 46, 35, 10.1016/j.ymben.2018.02.004 Lan, 2012, ATP drives direct photosynthetic production of 1-butanol in cyanobacteria, Proc. Natl. Acad. Sci. U. S. A., 109, 6018, 10.1073/pnas.1200074109 Lee, 2015, Systems strategies for developing industrial microbial strains, Nat. Biotechnol., 33, 1061, 10.1038/nbt.3365 Lee, 2006, Proteomic examination of Ralstonia eutropha in cellular responses to formic acid, Proteomics, 6, 4259, 10.1002/pmic.200500824 Li, 2012, Integrated electromicrobial conversion of CO2 to higher alcohols, Science, 1979, 1596, 10.1126/science.1217643 Li, 2020, Engineering the Calvin–Benson–Bassham cycle and hydrogen utilization pathway of Ralstonia eutropha for improved autotrophic growth and polyhydroxybutyrate production, Microb. Cell Factories, 19, 1, 10.1186/s12934-020-01494-y Li, 2021, Microbial engineering for the production of C2-C6 organic acids, Nat. Prod. Rep., 38, 1518, 10.1039/D0NP00062K Liu, 2015, Biosynthesis of butenoic acid through fatty acid biosynthesis pathway in Escherichia coli, Appl. Microbiol. Biotechnol., 99, 1795, 10.1007/s00253-014-6233-2 Liu, 2016, Water splitting–biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis, Science, 1979, 1210, 10.1126/science.aaf5039 Löwe, 2021, Threalose production in Cupriavidus necator from CO2 and hydrogen gas, Bioresour. Technol., 319, 10.1016/j.biortech.2020.124169 Lütte, 2012, Autotrophic production of stable-isotope-labeled arginine in Ralstonia eutropha strain H16, Appl. Environ. Microbiol., 78, 7884, 10.1128/AEM.01972-12 Mamat, 2014, Bio-based production of crotonic acid by pyrolysis of poly(3-hydroxybutyrate) inclusions, J. Clean. Prod., 83, 463, 10.1016/j.jclepro.2014.07.064 Marc, 2017, Over expression of GroESL in Cupriavidus necator for heterotrophic and autotrophic isopropanol production, Metab. Eng., 42, 74, 10.1016/j.ymben.2017.05.007 Matsumoto, 2013, Directed evolution and structural analysis of nadph-dependent acetoacetyl coenzyme A(acetoacetyl-CoA) reductase from Ralstonia eutropha reveals two mutations responsible for enhanced kinetics, Appl. Environ. Microbiol., 79, 6134, 10.1128/AEM.01768-13 McMahon, 2014, Functional screening and in vitro analysis reveal thioesterases with enhanced substrate specificity profiles that improve short-chain fatty acid production in Escherichia coli, Appl. Environ. Microbiol., 80, 1042, 10.1128/AEM.03303-13 Meadows, 2016, Rewriting yeast central carbon metabolism for industrial isoprenoid production, Nature, 537, 10.1038/nature19769 Milker, 2021, First time β-farnesene production by the versatile bacterium Cupriavidus necator, Microb. Cell Factories, 20, 1, 10.1186/s12934-021-01562-x Milker, 2021, Gram-scale production of the sesquiterpene α-humulene with Cupriavidus necator, Biotechnol. Bioeng., 118, 2694, 10.1002/bit.27788 Mougiakos, 2019, Efficient Cas9-based genome editing of Rhodobacter sphaeroides for metabolic engineering, Microb. Cell Factories, 18, 1, 10.1186/s12934-019-1255-1 Mozumder, 2014, A robust fed-batch feeding strategy independent of the carbon source for optimal polyhydroxybutyrate production, Process Biochem., 49, 365, 10.1016/j.procbio.2013.12.004 Müller, 2013, Engineering of Ralstonia eutropha H16 for autotrophic and heterotrophic production of methyl ketones, Appl. Environ. Microbiol., 79, 4433, 10.1128/AEM.00973-13 Nielsen, 2022, Innovation trends in industrial biotechnology, Trends Biotechnol., 10.1016/j.tibtech.2022.03.007 Niks, 2016, Spectroscopic and kinetic properties of the molybdenum-containing, NAD+-dependent formate dehydrogenase from Ralstonia eutropha, J. Biol. Chem., 291, 1162, 10.1074/jbc.M115.688457 Okamura, 2010, Unprecedented acetoacetyl-coenzyme A synthesizing enzyme of the thiolase superfamily involved in the mevalonate pathway, Proc. Natl. Acad. Sci. U. S. A., 107, 11265, 10.1073/pnas.1000532107 Orsi, 2022, Optimizing microbial networks through metabolic bypasses, Biotechnol. Adv., 60, 10.1016/j.biotechadv.2022.108035 Pan, 2021, Synthetic biology toolkit for engineering Cupriviadus necator H16 as a platform for CO2 valorization, Biotechnol. Biofuels, 10.1186/s13068-021-02063-0 Panich, 2021, Metabolic engineering of cupriavidus necator H16 for sustainable biofuels from CO2, Trends Biotechnol., 10.1016/j.tibtech.2021.01.001 Paulino, 2021, Recent advances in the microbial and enzymatic production of aroma compounds, Curr. Opin. Food Sci., 10.1016/j.cofs.2020.09.010 Pavan, 2022, Advances in systems metabolic engineering of autotrophic carbon oxide-fixing biocatalysts towards a circular economy, Metab. Eng., 71, 117, 10.1016/j.ymben.2022.01.015 Pohlmann, 2006, Genome sequence of the bioplastic-producing “Knallgas” bacterium Ralstonia eutropha H16, Nat. Biotechnol., 24, 1257, 10.1038/nbt1244 Porter, 2011, Genome sequence of Rhodobacter sphaeroides strain WS8N, J. Bacteriol., 193, 4027, 10.1128/JB.05257-11 Raberg, 2018, Ralstonia eutropha H16 in progress: applications beside PHAs and establishment as production platform by advanced genetic tools, Crit. Rev. Biotechnol., 10.1080/07388551.2017.1369933 Reiser, 2000, Characterization and cloning of an (R)-specific trans-2,3-enoylacyl-CoA hydratase from Rhodospirillum rubrum and use of this enzyme for PHA production in Escherichia coli, Appl. Microbiol. Biotechnol., 53, 209, 10.1007/s002530050010 Riedel, 2014, Lipid and fatty acid metabolism in Ralstonia eutropha: relevance for the biotechnological production of value-added products, Appl. Microbiol. Biotechnol., 10.1007/s00253-013-5430-8 Rowaihi, 2018, Poly(3-hydroxybutyrate) production in an integrated electromicrobial setup: investigation under stress-inducing conditions, PLoS One, 13, 10.1371/journal.pone.0196079 Satanowski, 2020, A one‐carbon path for fixing CO 2, EMBO Rep., 21, 1, 10.15252/embr.202050273 Sauer, 2008, Microbial production of organic acids: expanding the markets, Trends Biotechnol., 10.1016/j.tibtech.2007.11.006 Schada Von Borzyskowski, 2018, Replacing the ethylmalonyl-CoA pathway with the glyoxylate shunt provides metabolic flexibility in the central carbon metabolism of Methylobacterium extorquens AM1, ACS Synth. Biol., 7, 86, 10.1021/acssynbio.7b00229 Schempp, 2018, Microbial cell factories for the production of terpenoid flavor and fragrance compounds, J. Agric. Food Chem., 66, 2247, 10.1021/acs.jafc.7b00473 Segawa, 2019, Two NADH-dependent (S)-3-hydroxyacyl-CoA dehydrogenases from polyhydroxyalkanoate-producing Ralstonia eutropha, J. Biosci. Bioeng., 127, 294, 10.1016/j.jbiosc.2018.08.009 Sohn, 2021, Chemoautotroph Cupriavidus necator as a potential game-changer for global warming and plastic waste problem: a review, Bioresour. Technol., 340, 10.1016/j.biortech.2021.125693 Stöckl, 2020, From CO2 to bioplastic – coupling the electrochemical CO2 reduction with a microbial product generation by drop-in electrolysis, ChemSusChem, 13, 4086, 10.1002/cssc.202001235 Stöckl, 2022, Coupling electrochemical CO2 reduction to microbial product generation – identification of the gaps and opportunities, Curr. Opin. Biotechnol., 74, 154, 10.1016/j.copbio.2021.11.007 Sydow, 2017, Expanding the genetic tool box for Cupriavidus necator by a stabilized L-rhamnose inducible plasmid system, J. Biotechnol., 263, 1, 10.1016/j.jbiotec.2017.10.002 Tang, 2020, Metabolic engineering of Cupriavidus necator H16 for improved chemoautotrophic growth and PHB production under oxygen-limiting conditions, Metab. Eng., 61, 11, 10.1016/j.ymben.2020.04.009 Thoma, 2009, An improved Escherichia coli donor strain for diparental mating, FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Lett., 294, 127, 10.1111/j.1574-6968.2009.01556.x Turlin, 2022, Integrated rational and evolutionary engineering of genome-reduced Pseudomonas putida strains promotes synthetic formate assimilation, Metab. Eng., 74, 191, 10.1016/j.ymben.2022.10.008 van Wegen, 2001, Metabolic and kinetic analysis of poly(3-Hydroxybutyrate) production by recombinant Escherichia coli, Biotechnol. Bioeng., 74, 70, 10.1002/bit.1096 Volodina, 2014, (S)-3-hydroxyacyl-CoA dehydrogenase/enoyl-CoA hydratase (FadB’) from fatty acid degradation operon of Ralstonia eutropha H16, Amb. Express, 4, 1, 10.1186/s13568-014-0069-0 Volodina, 2016, Engineering the heterotrophic carbon sources utilization range of Ralstonia eutropha H16 for applications in biotechnology, Crit. Rev. Biotechnol., 10.3109/07388551.2015.1079698 Wang, 2019, Metabolic engineering of Yarrowia lipolytica for the biosynthesis of crotonic acid, Bioresour. Technol., 287, 10.1016/j.biortech.2019.121484 Wang, 2020, Synthetic methylotrophy: a practical solution for methanol-based biomanufacturing, Trends Biotechnol., 10.1016/j.tibtech.2019.12.013 Wang, 2022, Direct conversion of carbon dioxide to glucose using metabolically engineered Cupriavidus necator, Bioresour. Technol., 362, 10.1016/j.biortech.2022.127806 Wang, 2023, Engineering Cupriavidus necator H16 for heterotrophic and autotrophic production of myo-inositol, Bioresour. Technol., 368, 10.1016/j.biortech.2022.128321 Wenk, 2020, An “energy-auxotroph” Escherichia coli provides an in vivo platform for assessing NADH regeneration systems, Biotechnol. Bioeng., 117, 3422, 10.1002/bit.27490 Wenk, 2022, Synthetic carbon fixation via the autocatalytic serine threonine cycle, bioRxiv Windhorst, 2019, Efficient biochemical production of acetoin from carbon dioxide using Cupriavidus necator H16, Biotechnol. Biofuels, 12, 163, 10.1186/s13068-019-1512-x Wu, 2022, Efficient production of lycopene from CO2 via microbial electrosynthesis, Chem. Eng. J., 430, 10.1016/j.cej.2021.132943 Xiong, 2018, Genome editing of Ralstonia eutropha using an electroporation-based CRISPR-Cas9 technique, Biotechnol. Biofuels, 11, 172, 10.1186/s13068-018-1170-4 Yang, 2020, Performance and long-term stability of CO2 conversion to formic acid using a three-compartment electrolyzer design, J. CO2 Util., 42, 10.1016/j.jcou.2020.101349 Yim, 2011, Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol, Nat. Chem. Biol., 7, 445, 10.1038/nchembio.580 Yishai, 2016, The formate bio-economy, Curr. Opin. Chem. Biol., 35, 1, 10.1016/j.cbpa.2016.07.005 Zheng, 2021, Copper-catalysed exclusive CO2 to pure formic acid conversion via single-atom alloying, Nat. Nanotechnol., 16, 1386, 10.1038/s41565-021-00974-5 Zhu, 2020, Engineering unnatural methylotrophic cell factories for methanol-based biomanufacturing: challenges and opportunities, Biotechnol. Adv., 10.1016/j.biotechadv.2019.107467