Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Kỹ thuật chế tạo các hệ thống vận chuyển lipid nano thông minh được bao bọc bởi các hợp chất nano vàng và camptothecin cho điều trị hóa trị liệu và quang hóa trị liệu phối hợp trong ung thư buồng trứng
Journal of Materials Science - 2024
Tóm tắt
Ung thư buồng trứng mô tả một nhóm các rối loạn bắt đầu từ buồng trứng hoặc ống dẫn trứng và phúc mạc liền kề. Ngày càng rõ ràng rằng hóa trị liệu đơn độc không hiệu quả đối với ung thư buồng trứng. Để điều trị kết hợp hóa trị liệu/quang hóa trị liệu, chúng tôi đã hiệu quả phát triển các chất mang lipid nano cấu trúc (CPT + AuNCs@NSLCs) chứa camptothecin (CPT) và các hợp chất nano vàng (AuNCs). Các hợp chất nano vàng (AuNCs) với các hình dạng và kích thước khác nhau (thanh nano vàng [AuNRs] và cầu nano vàng [AuNSs]) đã được đưa vào NSLCs để tận dụng khả năng quang hóa của chúng và lý thuyết hóa sự kết hợp của các hệ thống vận chuyển thuốc cho điều trị hóa trị/quang hóa. Trước và sau khi được chiếu sáng bằng ánh sáng hồng ngoại gần (808 nm), NSLCs đã được kiểm tra khả năng giải phóng CPT một cách tự phát. AuNRs có tiềm năng làm nóng tối đa là ΔT = 22 °C trong 5 phút với 19.8 µg Au/mg lipid. Tế bào ung thư buồng trứng HeLa được sử dụng để đánh giá tác động độc tế bào của các công thức khác nhau, và dưới 5 phút phơi sáng NIR, CPT + AuNRs@NSLCs cho thấy sự ức chế sự phát triển đáng kể nhất (81%) trong nhóm. Đã được phát hiện rằng khả năng quang nhiệt của AuNCs bị ảnh hưởng trực tiếp bởi cấu trúc của chúng, rằng tính chất độc tế bào của CPT và hyperthermia cục bộ được cung cấp bởi AuNCs có thể gợi ý cải thiện thiệt hại tế bào, và rằng các nanoformulations tiên tiến đã được thiết lập rất hứa hẹn như một tác nhân quang hóa/hóa trị. Do đó, kết quả của nghiên cứu này cho thấy triển vọng trong việc chế tạo một nền tảng nano sinh học tương thích đa chức năng, được truyền lipid có thể áp dụng cho điều trị phối hợp và thuận lợi cho việc điều chỉnh các đặc tính của nó.
Từ khóa
#ung thư buồng trứng #hóa trị liệu #quang hóa trị liệu #camptothecin #hợp chất nano vàng #hệ thống vận chuyển thuốc #khả năng quang nhiệt #dòng tế bào HeLaTài liệu tham khảo
Chandra A, Pius C, Nabeel M, Nair M, Vishwanatha JK, Ahmad S, Basha R (2019) Ovarian cancer: current status and strategies for improving therapeutic outcomes. Cancer Med 8:7018–7031
Pokhriyal R, Hariprasad R, Kumar L, Hariprasad G (2019) Chemotherapy resistance in advanced ovarian cancer patients. Biomark Cancer. https://doi.org/10.1177/1179299X19860815
Kurnit KC, Fleming GF, Lengyel E (2021) Updates and new options in advanced epithelial ovarian cancer treatment. Obstet Gynecol 137:108
Barani M, Bilal M, Sabir F, Rahdar A, Kyzas GZ (2021) Nanotechnology in ovarian cancer: diagnosis and treatment. Life Sci 266:118914
Lee J, Minasian L, Kohn EC (2019) New strategies in ovarian cancer treatment. Cancer 125:4623–4629
Gaona-Luviano P, Medina-Gaona LA, Magaña-Pérez K (2020) Epidemiology of ovarian cancer. Chin Clin Oncol 9:47
Zeb A, Gul M, Nguyen T-T-L, Maeng H-J (2022) Controlled release and targeted drug delivery with poly (lactic-co-glycolic acid) nanoparticles: Reviewing two decades of research. J Pharm Investig 52:683–724
Sun R, Xiang J, Zhou Q, Piao Y, Tang J, Shao S, Zhou Z, Bae YH, Shen Y (2022) The tumor EPR effect for cancer drug delivery: current status, limitations, and alternatives. Adv Drug Deliv Rev 191:114614
Xu J, Shamul JG, Kwizera EA, He X (2022) Recent advancements in mitochondria-targeted nanoparticle drug delivery for cancer therapy. Nanomaterials 12:743
Wang Q, He Z, Zhu H, Gao W, Zhang N, Li J, Yan J, He B, Ye X (2022) Targeting drug delivery and efficient lysosomal escape for chemo-photodynamic cancer therapy by a peptide/DNA nanocomplex. J Mater Chem B 10:438–449
Itoo AM, Vemula SL, Gupta MT, Giram MV, Kumar SA, Ghosh B, Biswas S (2022) Multifunctional graphene oxide nanoparticles for drug delivery in cancer. J Control Release 350:26–59
Iravani S, Varma RS (2022) Nanosponges for drug delivery and cancer therapy: recent advances. Nanomaterials 12:2440
Kalashgrani MY, Javanmardi N (2022) Multifunctional Gold nanoparticle: as novel agents for cancer treatment. Adv Appl NanoBio-Technol 3:1–6
Jones T, Davison G, Jeong H-H, Lee T-C (2022) Engineered gold nanoparticles for photothermal applications. Phototherm Nanomater 54:33
Zhang R, Qin X, Lu J, Xu H, Zhao S, Li X, Yang C, Kong L, Guo Y, Zhang Z (2023) Chemodynamic/photothermal synergistic cancer immunotherapy based on yeast microcapsule-derived Au/Pt nanoparticles. ACS Appl Mater Interfaces 15:24134–24148
Shabani L, Kasaee SR, Chelliapan S, Abbasi M, Khajehzadeh H, Dehghani FS, Firuzyar T, Shafiee M, Amani AM, Mosleh-Shirazi S (2023) An investigation into green synthesis of Ru template gold nanoparticles and the in vitro photothermal effect on the MCF-7 human breast cancer cell line. Appl Phys A 129:564
Taylor ML, Wilson RE Jr, Amrhein KD, Huang X (2022) Gold nanorod-assisted photothermal therapy and improvement strategies. Bioengineering 9:200
Malhotra S, Dumoga S, Sirohi P, Singh N (2019) Red blood cells-derived vesicles for delivery of lipophilic drug camptothecin. ACS Appl Mater Interfaces 11:22141–22151. https://doi.org/10.1021/acsami.9b04827
Huang Q, Liu X, Wang H, Liu X, Zhang Q, Li K, Chen Y, Zhu Q, Shen Y, Sui M (2022) A nanotherapeutic strategy to overcome chemoresistance to irinotecan/7-ethyl-10-hydroxy-camptothecin in colorectal cancer. Acta Biomater 137:262–275
McCarron PA, Marouf WM, Quinn DJ, Fay F, Burden RE, Olwill SA, Scott CJ (2008) Antibody targeting of camptothecin-loaded PLGA nanoparticles to tumor cells. Bioconjug Chem 19:1561–1569
Zeng Y, Chen H, Yang F, Li H, Yang P (2022) A feasible strategy of fabricating camptothecin (SN38)-loaded holmium ferrite nanocarrier delivery for glioma treatment. Mater Res Express 9:115011
Chi Y, Wang Z, Wang J, Dong W, Xin P, Bi J, Jiang T, Chen C-P (2020) Dimeric camptothecin-loaded mPEG-PCL nanoparticles with high drug loading and reduction-responsive drug release. Colloid Polym Sci 298:51–58
Jeong EH, Jung G, Hong CA, Lee H (2014) Gold nanoparticle (AuNP)-based drug delivery and molecular imaging for biomedical applications. Arch Pharmacal Res 37:53–59
Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962. https://doi.org/10.1021/cm020732l
Ahmad I, Pandit J, Sultana Y, Mishra AK, Hazari PP, Aqil M (2019) Optimization by design of etoposide loaded solid lipid nanoparticles for ocular delivery: characterization, pharmacokinetic and deposition study. Mater Sci Eng, C 100:959–970. https://doi.org/10.1016/j.msec.2019.03.060
He K, Liu J, Gao Y, Hao Y, Yang X, Huang G (2020) Preparation and evaluation of stearylamine-bearing pemetrexed disodium-loaded cationic liposomes in vitro and in vivo. AAPS PharmSciTech 21:193. https://doi.org/10.1208/s12249-019-1586-6
Mohan N, Mohamed Subarkhan MK, Ramesh R (2018) Synthesis, antiproliferative activity and apoptosis-promoting effects of arene ruthenium(II) complexes with N, O chelating ligands. J Organometall Chem. https://doi.org/10.1016/j.jorganchem.2018.01.022
Giriraj K, Mohamed Kasim MS, Balasubramaniam K, Thangavel SK, Venkatesan J, Suresh S, Shanmugam P, Karri C (2022) Various coordination modes of new coumarin Schiff bases toward Cobalt (III) ion: synthesis, spectral characterization, in vitro cytotoxic activity, and investigation of apoptosis. Appl Organometall Chem 36:6536. https://doi.org/10.1002/aoc.6536
Mohamed Kasim MS, Sundar S, Rengan R (2018) Synthesis and structure of new binuclear ruthenium(II) arene benzil bis(benzoylhydrazone) complexes: investigation on antiproliferative activity and apoptosis induction. Inorg Chem Front 5:585–596. https://doi.org/10.1039/c7qi00761b
Dorairaj DP, Haribabu J, Dharmasivam M, Malekshah RE, Mohamed Subarkhan MK, Echeverria C, Karvembu R (2023) Ru(II)-p-cymene complexes of furoylthiourea ligands for anticancer applications against breast cancer cells. Inorg Chem 62:11761–11774. https://doi.org/10.1021/acs.inorgchem.3c00757
Balaji S, Mohamed Subarkhan MK, Ramesh R, Wang H, Semeril D (2020) Synthesis and structure of arene Ru(II) N∧O-chelating complexes: in vitro cytotoxicity and cancer cell death mechanism. Organometallics 39:1366–1375. https://doi.org/10.1021/acs.organomet.0c00092
Mohamed Subarkhan MK, Ren L, Xie B, Chen C, Wang Y, Wang H (2019) Novel tetranuclear ruthenium(II) arene complexes showing potent cytotoxic and antimetastatic activity as well as low toxicity in vivo. Eur J Med Chem. https://doi.org/10.1016/j.ejmech.2019.06.061
Pilliadugula R, Haribabu J, Mohamed Subarkhan MK, Echeverria C, Karvembu R, Gopalakrishnan N (2021) Effect of morphology and (Sn, Cr) doping on in vitro antiproliferation properties of hydrothermally synthesized 1D GaOOH nanostructures. J Sci: Adv Mater Dev 6:351–363. https://doi.org/10.1016/j.jsamd.2021.03.003
Wang Y, Jin J, Shu L, Li T, Lu S, Subarkhan MKM, Chen C, Wang H (2020) New organometallic ruthenium(II) compounds synergistically show cytotoxic, antimetastatic and antiangiogenic activities for the treatment of metastatic cancer. Chem A Eur J. 26:15170–15182. https://doi.org/10.1002/chem.202002970
Subarkhan MKM, Ramesh R (2016) Ruthenium(ii) arene complexes containing benzhydrazone ligands: synthesis, structure and antiproliferative activity. Inorg Chem Front 3:1245–1255. https://doi.org/10.1039/C6QI00197A
Swaminathan S, Haribabu J, Mohamed Subarkhan MK, Manonmani G, Senthilkumar K, Balakrishnan N, Bhuvanesh N, Echeverria C, Karvembu R (2022) Coordination behavior of acylthiourea ligands in their Ru(II)–benzene complexes─structures and anticancer activity. Organometallics 41:1621–1630. https://doi.org/10.1021/acs.organomet.2c00127
Mohamed Subarkhan MK, Ramesh R, Liu Y (2016) Synthesis and molecular structure of arene ruthenium(II) benzhydrazone complexes: Impact of substitution at the chelating ligand and arene moiety on antiproliferative activity. New J Chem. https://doi.org/10.1039/c6nj01936f
Swaminathan S, Haribabu J, Mohamed Subarkhan MK, Gayathri D, Balakrishnan N, Bhuvanesh N, Echeverria C, Karvembu R (2021) Impact of aliphatic acyl and aromatic thioamide substituents on the anticancer activity of Ru(ii)-p-cymene complexes with acylthiourea ligands—in vitro and in vivo studies. Dalton Trans 50:16311–16325. https://doi.org/10.1039/D1DT02611A
Kalaiarasi G, Mohamed Subarkhan M, Fathima Safwana CK, Sruthi S, Sathiya Kamatchi T, Keerthana B, Ashok Kumar SL (2022) New organoruthenium(II) complexes containing N, X-donor (X = O, S) heterocyclic chelators: Synthesis, spectral characterization, in vitro cytotoxicity and apoptosis investigation. Inorg Chim Acta 535:120863. https://doi.org/10.1016/j.ica.2022.120863
Sathiya Kamatchi T, Mohamed Subarkhan MK, Ramesh R, Wang H, Małecki JG (2020) Investigation into antiproliferative activity and apoptosis mechanism of new arene Ru(ii) carbazole-based hydrazone complexes. Dalton Trans 49:11385–11395. https://doi.org/10.1039/D0DT01476A
Raj Kumar R, Mohamed Subarkhan MK, Ramesh R (2015) Synthesis and structure of Nickel(ii) thiocarboxamide complexes: effect of ligand substitutions on DNA/protein binding, antioxidant and cytotoxicity. RSC Adv 5:46760–46773. https://doi.org/10.1039/C5RA06112A
Zhang H, Liang Z, Zhang J, Wang W, Zhang H, Lu Q (2020) Zinc oxide nanoparticle synthesized from Euphorbia fischeriana root inhibits the cancer cell growth through modulation of apoptotic signaling pathways in lung cancer cells. Arab J Chem 13:6174–6183. https://doi.org/10.1016/j.arabjc.2020.05.020
Ghosh S, Roy A, Singhania A, Chatterjee S, Swarnakar S, Fujita D, Bandyopadhyay A (2018) In-vivo & in-vitro toxicity test of molecularly engineered PCMS: a potential drug for wireless remote controlled treatment. Toxicol Rep 5:1044–1052. https://doi.org/10.1016/j.toxrep.2018.10.011
Derakhshani A, Hesaraki S, Nezafati N, Azami M (2022) Wound closure, angiogenesis and antibacterial behaviors of tetracalcium phosphate/hydroxyethyl cellulose/hyaluronic acid/gelatin composite dermal scaffolds. J Biomater Sci Polym Ed 33:605–626. https://doi.org/10.1080/09205063.2021.2008786
Haalboom M, Blokhuis-Arkes MHE, Beuk RJ, Meerwaldt R, Klont R, Schijffelen MJ, Bowler PB, Burnet M, Sigl E, van der Palen JAM (2019) Culture results from wound biopsy versus wound swab: Does it matter for the assessment of wound infection? Clin Microbiol Infect 25:629-e7
Chen M, Tian J, Liu Y, Cao H, Li R, Wang J, Wu J, Zhang Q (2019) Dynamic covalent constructed self-healing hydrogel for sequential delivery of antibacterial agent and growth factor in wound healing. Chem Eng J 373:413–424. https://doi.org/10.1016/j.cej.2019.05.043
Hernandez-Adame L, Angulo C, Delgado K, Schiavone M, Castex M, Palestino G, Betancourt-Mendiola L, Reyes-Becerril M (2019) Biosynthesis of β-d-glucan-gold nanoparticles, cytotoxicity and oxidative stress in mouse splenocytes. Int J Biol Macromol 134:379–389. https://doi.org/10.1016/j.ijbiomac.2019.05.065
Kasibhatla S, Amarante-Mendes GP, Finucane D, Brunner T, Bossy-Wetzel E, Green DR (2006) Acridine orange/ethidium bromide (AO/EB) staining to detect apoptosis. CSH Protocols 2006:799–803. https://doi.org/10.1101/pdb.prot4493
Fischer D, Li Y, Ahlemeyer B, Krieglstein J, Kissel T (2003) In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials 24:1121–1131. https://doi.org/10.1016/S0142-9612(02)00445-3
Zuo W, Chen D, Fan Z, Chen L, Zhu Z, Zhu Q, Zhu X (2020) Design of light/ROS cascade-responsive tumor-recognizing nanotheranostics for spatiotemporally controlled drug release in locoregional photo-chemotherapy. Acta Biomater 111:327–340. https://doi.org/10.1016/j.actbio.2020.04.052