Engineering of nanostructured carbon materials with electron or ion beams

Nature Materials - Tập 6 Số 10 - Trang 723-733 - 2007
Arkady V. Krasheninnikov1, Florian Banhart2
1Accelerator Laboratory, P.O. Box 43, FI-00014, University of Helsinki, Finland
2Institut für Physikalische Chemie, Universität Mainz, Mainz, D-55099, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Cook, I. Materials research for fusion energy. Nature Mater. 5, 77–80 (2006).

Nastasi, M., Mayer, J. & Hirvonen, J. Ion–solid Interactions: Fundamentals and Applications (Cambridge Univ. Press, Cambridge, 1996).

Ugarte, D. Curling and closure of graphitic networks under electron-beam irradiation. Nature 359, 707–709 (1992).

Banhart, F. & Ajayan, P. M. Carbon onions as nanoscopic pressure cells for diamond formation, Nature 382, 433–435 (1996).

Smith, B. W., Monthioux, M. & Luzzi, D. E. Encapsulated C60 in carbon nanotubes. Nature 396, 323–323 (1998).

Kis, A. et al. Reinforcement of single-walled carbon nanotube bundles by intertube bridging. Nature Mater. 3, 153–157 (2004).

Gómez-Navarro, G. et al. Tuning the conductance of single-walled carbon nanotubes by ion irradiation in the Anderson localization regime. Nature Mater. 4, 534–539 (2005).

Terrones, M., Terrones, H., Banhart, F., Charlier, J.-C. & Ajayan, P. M. Coalescence of single-walled carbon nanotubes. Science 288, 1226–1229 (2000).

Hashimoto, A., Suenaga, K., Gloter, A., Urita, K. & Iijima, S. Direct evidence for atomic defects in graphene layers. Nature 430, 870–873 (2004).

Mickelson, W., Aloni, S., Han, W. Q., Cumings, J. & Zettl, A. Packing C60 in boron nitride nanotubes. Science 300, 467–469 (2003).

Terrones, M. et al. Molecular junctions by joining single-walled carbon nanotubes. Phys. Rev. Lett. 89, 075505 (2002).

Sun, L. et al. Carbon nanotubes as high-pressure cylinders and nanoextruders. Science 312, 1199–1202 (2006).

Wesolowski, P., Lyutovich, Y., Banhart, F., Carstanjen, H. D. & Kronmüller, H. Formation of diamond in carbon onions under MeV ion irradiation. Appl. Phys. Lett. 71, 1948–1950 (1997).

Lifshitz, Y. et al. The mechanism of diamond nucleation from energetic species. Science 297, 1531–1533 (2002).

Yao, Y. et al. Diamond nucleation by energetic pure carbon bombardment. Phys. Rev. B 72, 035402 (2005).

Stahl, H., Appenzeller, J., Martel, R., Avouris, P. & Lengeler, B. Intertube coupling in ropes of SWNTs. Phys. Rev. Lett. 85, 5186–5189 (2000).

Wei, B. Q., D'Arcy-Gall, J., Ajayan, P. M. & Ramanath, G. Tailoring structure and electrical properties of carbon nanotubes using kilo-electron-volt ions. Appl. Phys. Lett. 83, 3581–3583 (2003).

Raghuveer, M. S. et al. Nanomachining carbon nanotubes with ion beams Appl. Phys. Lett. 84, 4484–4486 (2004).

Talapatra, S. et al. Irradiation-induced magnetism in carbon nanostructures. Phys. Rev. Lett. 95, 097201 (2005).

Esquinazi, P., Spearmann, D., Höhne, R., Setzer, A. & Butz, T. Induced magnetic ordering by proton irradiation in graphite. Phys. Rev. Lett. 91, 227201 (2003).

Chappert, C. et al. Planar patterned magnetic media obtained by ion irradiation. Science 280, 1919–1922 (1998).

Bernas, H. et al. Ordering intermetallic alloys by ion irradiation: a way to tailor magnetic media. Phys. Rev. Lett. 91, 077203 (2003).

Akcöltekin, E. et al. Creation of multiple nanodots by single ions. Nature Nanotechnol. 2, 290–294 (2007).

Dhar, S., Davis, R. P. & Feldman, L. C. A novel technique for the fabrication of nanostructures on silicon carbide using amorphization and oxidation, Nanotechnology 17, 4514–4518 (2006).

Heinig, K. H., Muller, T., Schmidt, B., Strobel, M. & Möller, W. Interfaces under ion irradiation: growth and taming of nanostructures. Appl. Phys. A 77, 17–25 (2003).

Klaumünzer, S. Modification of nanostructures by high-energy ion beams. Nucl. Instrum. Meth. B 244, 1–7 (2006).

Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F. & Smalley, R. E. C60: Buckminsterfullerene. Nature 318, 162–163 (1985).

Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).

Geim, A. K. & Novoselov, K. S. The rise of grapheme. Nature Mater. 6, 183–191 (2007).

Nasibulin, A. G. et al. A novel hybrid carbon material. Nature Nanotechnol. 2, 156–161 (2007).

Banhart, F. Irradiation effects in carbon nanostructures. Rep. Prog. Phys. 62, 1181–1221 (1999).

Pomoell, J., Krasheninnikov, A. V. & Nordlund, K. Ion ranges and irradiation-induced defects in multi-walled carbon nanotubes. J. Appl. Phys. 96, 2864–2871 (2004).

Kunert, T. & Schmidt, R. Excitations and fragmentation mechanisms in ion–fullerene collisions, Phys. Rev. Lett. 86, 5258–5261 (2001).

Ding, F., Jiao, K., Wu, M. & Yakobson, B. I. Pseudoclimb and dislocation dynamics in superplastic nanotubes. Phys. Rev. Lett. 98, 075503 (2007).

Osváth, Z. et al. Atomically resolved STM images of carbon nanotube defects produced by Ar+ irradiation. Phys. Rev. B 72, 045429 (2005).

Urita, K., Suenaga, K., Sugai, T., Shinohara, H. & Iijima, S. In situ observation of thermal relaxation of interstitial-vacancy pair defects in a graphite gap. Phys. Rev. Lett. 94, 155502 (2005).

Raghuveer, M. S. et al. Site-selective functionalization of carbon nanotubes. Adv. Mater. 18, 547–552 (2006).

Jung, Y. J. et al. Straightening suspended singlewalled carbon nanotubes by ion irradiation. Nano Lett. 4, 1109–1113 (2004).

Kim, D.-H. et al. Enhancement of the field emission of carbon nanotubes straightened by application of argon ion irradiation. Chem. Phys. Lett. 378, 232–237 (2003).

Ni, B. et al. A combined computational and experimental study of ion-beam modification of carbon nanotube bundles. J. Phys. Chem. B 105, 12719–12725 (2001).

Yang, D. Q., Rochette, J. & Sacher, E. Controlled chemical functionalization of multiwalled carbon nanotubes by kiloelectronvolt argon ion treatment and air exposure. Langmuir 21, 8539–8545 (2005).

Zhu, Y., Yi, T., Zheng, B. & Cao, L. The interaction of C60 fullerene and carbon nanotube with Ar ion beam. Appl. Surf. Sci. 137, 83–90 (1999).

Krasheninnikov, A. V., Nordlund, K. & Keinonen, J. Production of defects in supported carbon nanotubes under ion irradiation. Phys. Rev. B 65, 165423 (2002).

Lu, A. J. & Pan, B. C. Nature of single vacancy in achiral carbon nanotubes. Phys. Rev. Lett. 92, 105504 (2004).

Rossato, J., Baierle, R. J., Fazzio, A. & Mota, R. Vacancy formation process in carbon nanotubes: First-principles approach. Nano Lett. 5, 197–200 (2005).

Krasheninnikov, A. V., Lehtinen, P. O., Foster, A. S. & Nieminen, R. M. Bending the rules: contrasting vacancy energetics and migration in graphite and carbon nanotubes. Chem. Phys. Lett. 418, 132–136 (2006).

Lehtinen, P. O., Foster, A. S., Ma, Y., Krasheninnikov, A. V. & Nieminen, R. M. Irradiation-induced magnetism in graphite: a density functional study. Phys. Rev. Lett. 93, 187202 (2004).

Telling, R., Ewels, C., El-Barbary, A. & Heggie, M. Wigner defects bridge the graphite gap. Nature Mater. 2, 333–337 (2003).

El-Barbary, A. A., Telling, R. H., Ewels, C. P., Heggie, M. I. & Briddon, P. R. Structure and energetics of the vacancy in graphite. Phys. Rev. B 68, 144107 (2003).

Kotakoski, J., Krasheninnikov, A. V. & Nordlund, K. Energetics, structure, and long-range interaction of vacancy-type defects in carbon nanotubes: atomistic simulations. Phys. B 74, 245420 (2006).

Kis, A., Jensen, K., Aloni, S., Mickelson, W. & Zettl, A. Interlayer forces and ultralow sliding friction in multiwalled carbon nanotubes. Phys. Rev. Lett. 97, 025501 (2006).

Stone, A. J. & Wales, D. J. Theoretical-studies of icosahedral C60 and some related species. Chem. Phys. Lett. 128, 501–503 (1986).

Sammalkorpi, M., Krasheninnikov, A., Kuronen, A., Nordlund, K. & Kaski, K. Mechanical properties of carbon nanotubes with vacancy-like defects. Phys. Rev. B 70, 245416 (2004).

da Silva, A., Fazzio, A. & Antonelli, A. Bundling up carbon nanotubes through Wigner defects. Nano Lett. 5, 1045–1049 (2005).

Banhart, F., Li, J. X. & Krasheninnikov, A. V. Carbon nanotubes under electron irradiation: stability of the tubes and their action as pipes for atom transport. Phys. Rev. B 71, 241408(R) (2005).

Yuzvinsky, T. D. et al. Shrinking a carbon nanotubes. Nano Lett. 6, 2718–2722 (2006).

Li, J. X. & Banhart, F. The engineering of hot carbon nanotubes with an electron beam. Nano Lett. 4, 1143–1146 (2004).

Banhart, F., Li, J. X. & Terrones, M. Cutting single-walled carbon nanotubes with an electron beam: evidence for atom migration inside nanotubes. Small 1, 953–956 (2005).

Yuzvinsky, T. D., Fennimore, A. M., Mickelson, W., Esquivias, C. & Zettl, A. Precision cutting of nanotubes with a low-energy electron beam. Appl. Phys. Lett. 86, 053109 (2005).

Yoon, M. et al. Zipper mechanism of nanotube fusion: theory and experiment. Phys. Rev. Lett. 92, 075504 (2004).

Suzuki, M., Ishibashi, K., Toratani, K., Tsuya, D. & Aoyagi, Y. Tunnel barrier formation using argon-ion irradiation and single quantum dots in multiwall carbon nanotubes. Appl. Phys. Lett. 81, 2273–2275 (2002).

Maehashi, K. et al. Formation of single quantum dot in single-walled carbon nanotube channel using focused-ion-beam technique. Appl. Phys. Lett. 90, 023103 (2007).

Ishibashi, K., Tsuya, D., Suzuki, M. & Aoyagi, Y. Fabrication of a single-electron inverter in multiwall carbon nanotubes. Appl. Phys. Lett. 82, 3307–3309 (2003).

Mikó, C. et al. Effect of electron irradiation on the electrical properties of fibers of aligned single-walled carbon nanotubes. Appl. Phys. Lett. 83, 4622–4624 (2003).

Kim, H. M. et al. Morphological change of multiwalled carbon nanotubes through high-energy (MeV) ion irradiation. J. Appl. Phys. 97, 026103 (2005).

Schittenhelm, H. et al. Synthesis and characterization of single-wall carbon nanotube amorphous diamond thin-film composites. Appl. Phys. Lett. 81, 2097–2099 (2002).

Kumar, A. et al. Synthesis of confined electrically conducting carbon nanowires by heavy ion irradiation of fullerene thin film. J. Appl. Phys. 101, 014308 (2007).

Kumar, A., Avasthi, D. K., Pivin, J. C., Tripathi, A. & Singh, F. Ferromagnetism induced by heavy-ion irradiaiton in fullerene films. Phys. Rev. B 74, 153409 (2006).

Basiuk, V. A., Kobayashi, K., Negishi, T. K. Y., Basiuk, E. V. & Saniger-Blesa, J. M., Irradiation of single-walled carbon nanotubes with high-energy protons. Nano Lett. 2, 789–791 (2002).

Neupane, P. P., Manasreh, M. O., Weaver, B. D., Landi, B. J. & Raffaelle, R. P. Proton irradiation effect on single-wall carbon nanotubes in a poly(3-octylthiophene) matrix. Appl. Phys. Lett. 86, 221908 (2005).

Jang, I., Sinnott, S. B., Danailov, D. & Keblinski, P. Molecular dynamics simulation study of carbon nanotubes welding under electron beam irradiation. Nano Lett. 4, 109–114 (2004).

Krasheninnikov, A. V., Nordlund, K., Keinonen, J. & Banhart, F. Ion-irradiation induced welding of carbon nanotubes. Phys. Rev. B 66, 245403 (2002).

Luzzi, D. E. & Smith, B. W. Carbon cage structures in single wall carbon nanotubes: a new class of materials. Carbon 38, 1751–1756 (2000).

Hernández, E. et al. Fullerene coalescence in nanopeapods: a path to novel tubular carbon. Nano Lett. 3, 1037–1042 (2003).

Sun, L., Rodríguez-Manzo, J. A. & Banhart, F., Elastic deformation of nanometer-sized metal crystals in graphitic shells. Appl. Phys. Lett. 89, 263104 (2006).

Li, J. X. & Banhart, F. The deformation of single, nanometer-sized metal crystals in graphitic shells. Adv. Mater. 17, 1539–1542 (2005).

Banhart, F., Hernández, E. & Terrones, M. Extreme superheating and supercooling of encapsulated metals in fullerene-like shells. Phys. Rev. Lett. 90, 185502 (2003).

Zhang, S. et al. Mechanics of defects in carbon nanotubes: atomistic and multiscale simulations. Phys. Rev. B 71, 115403 (2005).

Dumitrica, T., Hua, M. & Yakobson, B. I. Symmetry-, time-, and temperature-dependent strength of carbon nanotubes. Proc. Natl Acad. Sci. USA 103, 6105–6109 (2006).

Åström, J. A., Krasheninnikov, A. V. & Nordlund, K. Carbon nanotube mats and fibers with irradiation-improved mechanical characteristics: a theoretical model. Phys. Rev. Lett. 93, 215503 (2004).

Skákalová, V., Woo, Y., Osváth, Z., Biró, L. P. & Roth, S. Electron transport in Ar-irradiated single wall carbon nanotubes. Phys. Status Solidi B 243, 3346–3350 (2006).

Krasheninnikov, A. V. Predicted scanning microscopy images of carbon nanotubes with atomic vacancies. Solid State Commun. 118, 361–365 (2001).

Krasheninnikov, A. V., Nordlund, K., Sirviö, M., Salonen, E. & Keinonen, J. Formation of ion irradiation-induced atomic-scale defects on walls of carbon nanotubes. Phys. Rev. B 63, 245405 (2001).

Makarova, T. & Palacio, F. (eds) Carbon Based Magnetism (Elsevier, Amsterdam, 2006).

Andriotis, A. N., Menon, M., Sheetz, R. M. & Chernozatonskii, L. Magnetic properties of C60 polymers. Phys. Rev. Lett. 90, 026801 (2003).

Chan, J. A., Montanari, B., Gale, J. D., Taylor, S. M. B. J. W. & Harrison, N. M. Magnetic properties of polymerized C60: the influence of defects and hydrogen. Phys. Rev. B 70, 041403(R) (2004).

Zaiser, M. & Banhart, F. Radiation-induced transformation of graphite to diamond. Phys. Rev. Lett. 79, 3680–3683 (1997).

Lyutovich, Y. & Banhart, F. Low-pressure transformation of graphite to diamond under irradiation. Appl. Phys. Lett. 74, 659–660 (1999).

Zaiser, M., Lyutovich, Y. & Banhart, F., Irradiation-induced transformation of graphite to diamond: a quantitative study. Phys. Rev. B 62, 3058–3064 (2000).

Terrones, M. & Terrones, H. The role of defects in graphitic structures. Fullerene Sci. Technol. 4, 517–522 (1996).

Rodríguez-Manzo, J. A. et al. In situ nucleation of carbon nanotubes by the injection of carbon atoms into metal particles. Nature Nanotechnol. 2, 307–311 (2007).

Stolojan, V., Tison, Y., Chen, G. Y. & Silva, R. Controlled growth-reversal of catalytic carbon nanotubes under electron-beam irradiation. Nano Lett. 6, 1837–1841 (2006).

Golberg, D. & Bando, Y. Electron irradiation-induced solid state phase transformations: application to the study of fullerenes and nanotubes in the B-C-N system. Recent Res. Dev. Appl. Phys. 2, 1–14 (1999).

Zobelli, A. et al. Defective structure of BN nanotubes: from single vacancies to dislocation lines. Nano Lett. 6, 1955–1960 (2006).

Xu, S. et al. Nanometer-scale modification and welding of silicon and metallic nanowires with a high-intensity electron beam. Small 1, 1221–1229 (2005).

Zhan, J., Bando, Y., Hu, J. & Golberg, D. Nanofabrication of ZnO nanowires. Appl. Phys. Lett. 89, 243111 (2006).

Castro, M., Cuerno, R., Vázquez, L. & Gago, R. Self-organized ordering of nanostructures produced by ion-beam sputtering. Phys. Rev. Lett. 94, 016102 (2005).

Mohanta, S. K., Sonia, R. K., Tripathy, S. & Chua, S. J. Ordered InP nanostructures fabricated by Ar-ion irradiation. Appl. Phys. Lett. 88, 043101 (2006).

Kluth, P. et al. Disorder and cluster formation during ion irradiation of Au nanoparticles in SiO2 . Phys. Rev. B 74, 014202 (2006).

McEuen, P. L. Carbon-based electronics. Nature 393, 15–17 (1998).

Miyamoto, Y., Berber, S., Yoon, M., Rubio, A. & Tománek, D. Can photo excitations heal defects in carbon nanotubes? Chem. Phys. Lett. 392, 209–213 (2004).

Krasheninnikov, A. V., Nordlund, K. & Keinonen, J. Carbon nanotubes as masks against ion irradiation: an insight from atomistic simulations. Appl. Phys. Lett. 81, 1101–1103 (2002).

Wang, Y.-N. & Mišković, Z. L. Interactions of fast ions with carbon nanotubes: self-energy and stopping power. Phys. Rev. A 69, 022901 (2004).

Ziegler, J. F., Biersack, J. P. & Littmark, U. The Stopping and Range of Ions in Matter (Pergamon, New York, 1985).

Banhart, F. Formation and transformation of carbon nanoparticles under electron irradiation. Phil. Trans. R. Soc. Lond. A 362, 2205–2222 (2004).

Salonen, E., Krasheninnikov, A. V. & Nordlund, K. Beam interactions with materials and atoms. Nucl. Instrum. Meth. B 193, 603–608 (2002).