Engineering molecular self-assembly of theranostic nanoprobes for dual-modal imaging-guided precise chemotherapy
Tóm tắt
Uniting dual-modality of fluorescence and photoacoustic (PA) imaging into theranostic nanoprobes is imperative for spatio-temporally tracking of drug delivery, distribution, and release. Herein, we present a rational design strategy of molecularly precise amphiphilic prodrugs BPn-Cy-S-CPT (n=0, 5, and 20, refers to the degree of polyethylene glycol (PEG) polymerization; CPT=camptothecin) to tune their self-assembly behaviour, innovatively integrating dual-modal PA and near-infrared (NIR) fluorescence imaging in a single-molecular framework. Among these elaborately designed prodrugs, it is found that only BP20-Cy-S-CPT could form uniform and highly stable self-assemblies, especially in showing synergistically enhanced PA and dual-channel NIR signals. In detail, PA signal is employed to trace the in vivo delivery with high spatial resolution, meanwhile the glutathione (GSH)-triggered dual-channel fluorescence response could real-timely monitor drug distribution and release without “blind spot”. The results of in vivo dual-modal PA/NIR imaging have verified that BP20-Cy-S-CPT displayed synergistic targeting (including passive, active, and activatable targeting) for tumor-specific delivery, and thereby executed CPT release in the tumor site. Consequently, our molecularly precise BP20-Cy-S-CPT self-assemblies could make a breakthrough to spatio-temporally track the in vivo drug release profile, expanding the intelligent theranostic toolbox for precise cancer treatment.
Tài liệu tham khảo
Lee MH, Kim EJ, Lee H, Kim HM, Chang MJ, Park SY, Hong KS, Kim JS, Sessler JL. J Am Chem Soc, 2016, 138: 16380–16387
Li X, Kim CY, Lee S, Lee D, Chung HM, Kim G, Heo SH, Kim C, Hong KS, Yoon J. J Am Chem Soc, 2017, 139: 10880–10886
Weissleder R, Pittet MJ. Nature, 2008, 452: 580–589
Liu JN, Bu W, Shi J. Chem Rev, 2017, 117: 6160–6224
Zhao X, Long S, Li M, Cao J, Li Y, Guo L, Sun W, Du J, Fan J, Peng X. J Am Chem Soc, 2020, 142: 1510–1517
Wei T, Lu S, Sun J, Xu Z, Yang X, Wang F, Ma Y, Shi YS, Chen X. J Am Chem Soc, 2020, 142: 3806–3813
Ren TB, Xu W, Zhang W, Zhang XX, Wang ZY, Xiang Z, Yuan L, Zhang XB. J Am Chem Soc, 2018, 140: 7716–7722
Sun YQ, Liu J, Zhang H, Huo Y, Lv X, Shi Y, Guo W. J Am Chem Soc, 2014, 136: 12520–12523
Wang R, Gu X, Li Q, Gao J, Shi B, Xu G, Zhu T, Tian H, Zhao C. J Am Chem Soc, 2020, 142: 15084–15090
Ye Z, Yang W, Wang C, Zheng Y, Chi W, Liu X, Huang Z, Li X, Xiao Y. J Am Chem Soc, 2019, 141: 14491–14495
Yin L, Sun H, Zhang H, He L, Qiu L, Lin J, Xia H, Zhang Y, Ji S, Shi H, Gao M. J Am Chem Soc, 2019, 141: 3265–3273
De la Zerda A, Zavaleta C, Keren S, Vaithilingam S, Bodapati S, Liu Z, Levi J, Smith BR, Ma TJ, Oralkan O, Cheng Z, Chen X, Dai H, Khuri-Yakub BT, Gambhir SS. Nat Nanotech, 2008, 3: 557–562
Wu Y, Huang S, Wang J, Sun L, Zeng F, Wu S. Nat Commun, 2018, 9: 3983
Chen C, Ou H, Liu R, Ding D. Adv Mater, 2020, 32: 1806331
Zhou EY, Knox HJ, Liu C, Zhao W, Chan J. J Am Chem Soc, 2019, 141: 17601–17609
Teng L, Song G, Liu Y, Han X, Li Z, Wang Y, Huan S, Zhang XB, Tan W. J Am Chem Soc, 2019, 141: 13572–13581
Miao Q, Lyu Y, Ding D, Pu K. Adv Mater, 2016, 28: 3662–3668
Wang Y, Hu X, Weng J, Li J, Fan Q, Zhang Y, Ye D. Angew Chem Int Ed, 2019, 58: 4886–4890
Taruttis A, Ntziachristos V. Nat Photon, 2015, 9: 219–227
Shi J, Kantoff PW, Wooster R, Farokhzad OC. Nat Rev Cancer, 2017, 17: 20–37
Yuan P, Mao X, Wu X, Liew SS, Li L, Yao SQ. Angew Chem Int Ed, 2019, 58: 7657–7661
Sun J, Du K, Diao J, Cai X, Feng F, Wang S. Angew Chem Int Ed, 2020, 59: 12122–12128
Sharma A, Lee MG, Won M, Koo S, Arambula JF, Sessler JL, Chi SG, Kim JS. J Am Chem Soc, 2019, 141: 15611–15618
Yang B, Chen Y, Shi J. Angew Chem Int Ed, 2020, 59: 9693–9701
Mao D, Ando S, Sato SI, Qin Y, Hirata N, Katsuda Y, Kawase E, Kuo TF, Minami I, Shiba Y, Ueda K, Nakatsuji N, Uesugi M. Angew Chem Int Ed, 2017, 56: 1765–1770
Gu K, Zhu WH, Peng X. Sci China Chem, 2019, 62: 189–198
Huang P, Wang D, Su Y, Huang W, Zhou Y, Cui D, Zhu X, Yan D. J Am Chem Soc, 2014, 136: 11748–11756
Ji C, Gao Q, Dong X, Yin W, Gu Z, Gan Z, Zhao Y, Yin M. Angew Chem Int Ed, 2018, 57: 11384–11388
Sharma A, Lee MG, Shi H, Won M, Arambula JF, Sessler JL, Lee JY, Chi SG, Kim JS. Chem, 2018, 4: 2370–2383
Yuan Y, Kwok RTK, Tang BZ, Liu B. J Am Chem Soc, 2014, 136: 2546–2554
Chakroun RW, Sneider A, Anderson CF, Wang F, Wu PH, Wirtz D, Cui H. Angew Chem Int Ed, 2020, 59: 4434–4442
Yan C, Shi L, Guo Z, Zhu W. Chin Chem Lett, 2019, 30: 1849–1855
Cheetham AG, Chakroun RW, Ma W, Cui H. Chem Soc Rev, 2017, 46: 6638–6663
He S, Li J, Lyu Y, Huang J, Pu K. J Am Chem Soc, 2020, 142: 7075–7082
Su H, Wang F, Wang Y, Cheetham AG, Cui H. J Am Chem Soc, 2019, 141: 17107–17111
Qi J, Chen C, Zhang X, Hu X, Ji S, Kwok RTK, Lam JWY, Ding D, Tang BZ. Nat Commun, 2018, 9: 1848
Liu Y, Teng L, Liu HW, Xu C, Guo H, Yuan L, Zhang XB, Tan W. Sci China Chem, 2019, 62: 1275–1285
Fang H, Chen Y, Wang Y, Geng S, Yao S, Song D, He W, Guo Z. Sci China Chem, 2020, 63: 699–706
Li H, Shi W, Li X, Hu Y, Fang Y, Ma H. J Am Chem Soc, 2019, 141: 18301–18307
Chen Z, Mu X, Han Z, Yang S, Zhang C, Guo Z, Bai Y, He W. Am Chem Soc, 2019, 141: 17973–17977
Guo Z, Ma Y, Liu Y, Yan C, Shi P, Tian H, Zhu WH. Sci China Chem, 2018, 61: 1293–1300
Huang J, Pu K. Angew Chem Int Ed, 2020, 59: 11717–11731
Li Q, Li S, He S, Chen W, Cheng P, Zhang Y, Miao Q, Pu K. Angew Chem Int Ed, 2020, 59: 7018–7023
Discher DE, Eisenberg A. Science, 2002, 297: 967–973
Zhou T, Hu R, Wang L, Qiu Y, Zhang G, Deng Q, Zhang H, Yin P, Situ B, Zhan C, Qin A, Tang BZ. Angew Chem Int Ed, 2020, 59: 9952–9956
Wang Y, Chen M, Alifu N, Li S, Qin W, Qin A, Tang BZ, Qian J. ACS Nano, 2017, 11: 10452–10461
Yang Y, Zhou T, Jin M, Zhou K, Liu D, Li X, Huo F, Li W, Yin C. J Am Chem Soc, 2020, 142: 1614–1620
Xu Z, Huang X, Han X, Wu D, Zhang B, Tan Y, Cao M, Liu SH, Yin J, Yoon J. Chem, 2018, 4: 1609–1628
Chen H, Tang Y, Ren M, Lin W. Chem Sci, 2016, 7: 1896–1903
Han X, Song X, Yu F, Chen L. Chem Sci, 2017, 8: 6991–7002