Engineering molecular self-assembly of theranostic nanoprobes for dual-modal imaging-guided precise chemotherapy

Science in China Series B: Chemistry - Tập 64 - Trang 2045-2052 - 2021
Jianbin Tang1, Hongxia Xu1, Zijun Zhao2, Zhiqian Guo2, Chenxu Yan2, Menglan Wu2, Weijun Zhao2
1Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
2Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China

Tóm tắt

Uniting dual-modality of fluorescence and photoacoustic (PA) imaging into theranostic nanoprobes is imperative for spatio-temporally tracking of drug delivery, distribution, and release. Herein, we present a rational design strategy of molecularly precise amphiphilic prodrugs BPn-Cy-S-CPT (n=0, 5, and 20, refers to the degree of polyethylene glycol (PEG) polymerization; CPT=camptothecin) to tune their self-assembly behaviour, innovatively integrating dual-modal PA and near-infrared (NIR) fluorescence imaging in a single-molecular framework. Among these elaborately designed prodrugs, it is found that only BP20-Cy-S-CPT could form uniform and highly stable self-assemblies, especially in showing synergistically enhanced PA and dual-channel NIR signals. In detail, PA signal is employed to trace the in vivo delivery with high spatial resolution, meanwhile the glutathione (GSH)-triggered dual-channel fluorescence response could real-timely monitor drug distribution and release without “blind spot”. The results of in vivo dual-modal PA/NIR imaging have verified that BP20-Cy-S-CPT displayed synergistic targeting (including passive, active, and activatable targeting) for tumor-specific delivery, and thereby executed CPT release in the tumor site. Consequently, our molecularly precise BP20-Cy-S-CPT self-assemblies could make a breakthrough to spatio-temporally track the in vivo drug release profile, expanding the intelligent theranostic toolbox for precise cancer treatment.

Tài liệu tham khảo

Lee MH, Kim EJ, Lee H, Kim HM, Chang MJ, Park SY, Hong KS, Kim JS, Sessler JL. J Am Chem Soc, 2016, 138: 16380–16387 Li X, Kim CY, Lee S, Lee D, Chung HM, Kim G, Heo SH, Kim C, Hong KS, Yoon J. J Am Chem Soc, 2017, 139: 10880–10886 Weissleder R, Pittet MJ. Nature, 2008, 452: 580–589 Liu JN, Bu W, Shi J. Chem Rev, 2017, 117: 6160–6224 Zhao X, Long S, Li M, Cao J, Li Y, Guo L, Sun W, Du J, Fan J, Peng X. J Am Chem Soc, 2020, 142: 1510–1517 Wei T, Lu S, Sun J, Xu Z, Yang X, Wang F, Ma Y, Shi YS, Chen X. J Am Chem Soc, 2020, 142: 3806–3813 Ren TB, Xu W, Zhang W, Zhang XX, Wang ZY, Xiang Z, Yuan L, Zhang XB. J Am Chem Soc, 2018, 140: 7716–7722 Sun YQ, Liu J, Zhang H, Huo Y, Lv X, Shi Y, Guo W. J Am Chem Soc, 2014, 136: 12520–12523 Wang R, Gu X, Li Q, Gao J, Shi B, Xu G, Zhu T, Tian H, Zhao C. J Am Chem Soc, 2020, 142: 15084–15090 Ye Z, Yang W, Wang C, Zheng Y, Chi W, Liu X, Huang Z, Li X, Xiao Y. J Am Chem Soc, 2019, 141: 14491–14495 Yin L, Sun H, Zhang H, He L, Qiu L, Lin J, Xia H, Zhang Y, Ji S, Shi H, Gao M. J Am Chem Soc, 2019, 141: 3265–3273 De la Zerda A, Zavaleta C, Keren S, Vaithilingam S, Bodapati S, Liu Z, Levi J, Smith BR, Ma TJ, Oralkan O, Cheng Z, Chen X, Dai H, Khuri-Yakub BT, Gambhir SS. Nat Nanotech, 2008, 3: 557–562 Wu Y, Huang S, Wang J, Sun L, Zeng F, Wu S. Nat Commun, 2018, 9: 3983 Chen C, Ou H, Liu R, Ding D. Adv Mater, 2020, 32: 1806331 Zhou EY, Knox HJ, Liu C, Zhao W, Chan J. J Am Chem Soc, 2019, 141: 17601–17609 Teng L, Song G, Liu Y, Han X, Li Z, Wang Y, Huan S, Zhang XB, Tan W. J Am Chem Soc, 2019, 141: 13572–13581 Miao Q, Lyu Y, Ding D, Pu K. Adv Mater, 2016, 28: 3662–3668 Wang Y, Hu X, Weng J, Li J, Fan Q, Zhang Y, Ye D. Angew Chem Int Ed, 2019, 58: 4886–4890 Taruttis A, Ntziachristos V. Nat Photon, 2015, 9: 219–227 Shi J, Kantoff PW, Wooster R, Farokhzad OC. Nat Rev Cancer, 2017, 17: 20–37 Yuan P, Mao X, Wu X, Liew SS, Li L, Yao SQ. Angew Chem Int Ed, 2019, 58: 7657–7661 Sun J, Du K, Diao J, Cai X, Feng F, Wang S. Angew Chem Int Ed, 2020, 59: 12122–12128 Sharma A, Lee MG, Won M, Koo S, Arambula JF, Sessler JL, Chi SG, Kim JS. J Am Chem Soc, 2019, 141: 15611–15618 Yang B, Chen Y, Shi J. Angew Chem Int Ed, 2020, 59: 9693–9701 Mao D, Ando S, Sato SI, Qin Y, Hirata N, Katsuda Y, Kawase E, Kuo TF, Minami I, Shiba Y, Ueda K, Nakatsuji N, Uesugi M. Angew Chem Int Ed, 2017, 56: 1765–1770 Gu K, Zhu WH, Peng X. Sci China Chem, 2019, 62: 189–198 Huang P, Wang D, Su Y, Huang W, Zhou Y, Cui D, Zhu X, Yan D. J Am Chem Soc, 2014, 136: 11748–11756 Ji C, Gao Q, Dong X, Yin W, Gu Z, Gan Z, Zhao Y, Yin M. Angew Chem Int Ed, 2018, 57: 11384–11388 Sharma A, Lee MG, Shi H, Won M, Arambula JF, Sessler JL, Lee JY, Chi SG, Kim JS. Chem, 2018, 4: 2370–2383 Yuan Y, Kwok RTK, Tang BZ, Liu B. J Am Chem Soc, 2014, 136: 2546–2554 Chakroun RW, Sneider A, Anderson CF, Wang F, Wu PH, Wirtz D, Cui H. Angew Chem Int Ed, 2020, 59: 4434–4442 Yan C, Shi L, Guo Z, Zhu W. Chin Chem Lett, 2019, 30: 1849–1855 Cheetham AG, Chakroun RW, Ma W, Cui H. Chem Soc Rev, 2017, 46: 6638–6663 He S, Li J, Lyu Y, Huang J, Pu K. J Am Chem Soc, 2020, 142: 7075–7082 Su H, Wang F, Wang Y, Cheetham AG, Cui H. J Am Chem Soc, 2019, 141: 17107–17111 Qi J, Chen C, Zhang X, Hu X, Ji S, Kwok RTK, Lam JWY, Ding D, Tang BZ. Nat Commun, 2018, 9: 1848 Liu Y, Teng L, Liu HW, Xu C, Guo H, Yuan L, Zhang XB, Tan W. Sci China Chem, 2019, 62: 1275–1285 Fang H, Chen Y, Wang Y, Geng S, Yao S, Song D, He W, Guo Z. Sci China Chem, 2020, 63: 699–706 Li H, Shi W, Li X, Hu Y, Fang Y, Ma H. J Am Chem Soc, 2019, 141: 18301–18307 Chen Z, Mu X, Han Z, Yang S, Zhang C, Guo Z, Bai Y, He W. Am Chem Soc, 2019, 141: 17973–17977 Guo Z, Ma Y, Liu Y, Yan C, Shi P, Tian H, Zhu WH. Sci China Chem, 2018, 61: 1293–1300 Huang J, Pu K. Angew Chem Int Ed, 2020, 59: 11717–11731 Li Q, Li S, He S, Chen W, Cheng P, Zhang Y, Miao Q, Pu K. Angew Chem Int Ed, 2020, 59: 7018–7023 Discher DE, Eisenberg A. Science, 2002, 297: 967–973 Zhou T, Hu R, Wang L, Qiu Y, Zhang G, Deng Q, Zhang H, Yin P, Situ B, Zhan C, Qin A, Tang BZ. Angew Chem Int Ed, 2020, 59: 9952–9956 Wang Y, Chen M, Alifu N, Li S, Qin W, Qin A, Tang BZ, Qian J. ACS Nano, 2017, 11: 10452–10461 Yang Y, Zhou T, Jin M, Zhou K, Liu D, Li X, Huo F, Li W, Yin C. J Am Chem Soc, 2020, 142: 1614–1620 Xu Z, Huang X, Han X, Wu D, Zhang B, Tan Y, Cao M, Liu SH, Yin J, Yoon J. Chem, 2018, 4: 1609–1628 Chen H, Tang Y, Ren M, Lin W. Chem Sci, 2016, 7: 1896–1903 Han X, Song X, Yu F, Chen L. Chem Sci, 2017, 8: 6991–7002