Engineering metabolic pathways in Amycolatopsis japonicum for the optimization of the precursor supply for heterologous brasilicardin congeners production
Tài liệu tham khảo
Vickers, 2014, Metabolic engineering of volatile isoprenoids in plants and microbes, Plant Cell Environ, 37, 1753, 10.1111/pce.12316
Wallach, 1887, Zu Kenntniss der Terpene und ätherischen Öle, Just Lieb Ann Chem, 238, 78, 10.1002/jlac.18872380104
Heuston, 2012, Isoprenoid biosynthesis in bacterial pathogens, Microbiol, 158, 1389, 10.1099/mic.0.051599-0
Bouvier, 2005, Biogenesis, molecular regulation and function of plant isoprenoids, Prog Lipid Res, 44, 357, 10.1016/j.plipres.2005.09.003
Oldfield, 2012, Terpene biosynthesis: modularity rules, Angew Chem Int Ed Engl, 51, 1124, 10.1002/anie.201103110
Rohmer, 1999, The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants, Nat Prod Rep, 16, 565, 10.1039/a709175c
Kuzuyama, 2012, Two distinct pathways for essential metabolic precursors for isoprenoid biosynthesis, Proc Jpn Acad Ser B Phys Biol Sci, 88, 41, 10.2183/pjab.88.41
Kellogg, 1997, Chain elongation in the isoprenoid biosynthetic pathway, Curr Opin Chem Biol, 1, 570, 10.1016/S1367-5931(97)80054-3
Dogbo, 1987, Purification of isopentenyl pyrophosphate isomerase and geranylgeranyl pyrophosphate synthase from Capsicum chromoplasts by affinity-chromatography, Biochim Biophys Acta, 920, 140, 10.1016/0005-2760(87)90253-0
Jiang, 1995, BTS1 encodes a geranylgeranyl diphosphate synthase in Saccharomyces cerevisiae, J Biol Chem, 270, 21793, 10.1074/jbc.270.37.21793
Sagami, 1994, Purification and properties of geranylgeranyl-diphosphate synthase from bovine brain, J Biol Chem, 269, 20561, 10.1016/S0021-9258(17)32030-6
Kirby, 2009, Biosynthesis of plant isoprenoids: perspectives for microbial engineering, Annu Rev Plant Biol, 60, 335, 10.1146/annurev.arplant.043008.091955
Li, 2016, Strategies of isoprenoids production in engineered bacteria, J Appl Microbiol, 121, 932, 10.1111/jam.13237
Nosten, 2007, Artemisinin-based combination treatment of falciparum malaria, Am J Trop Med Hyg, 77, 181, 10.4269/ajtmh.2007.77.181
Hale, 2007, Microbially derived artemisinin: a biotechnology solution to the global problem of access to affordable antimalarial drugs, Am J Trop Med Hyg, 77, 198, 10.4269/ajtmh.2007.77.198
Yang, 2012, Bio-isoprene production using exogenous MVA pathway and isoprene synthase in Escherichia coli, Bioresour Technol, 104, 642, 10.1016/j.biortech.2011.10.042
Zurbriggen, 2012, Isoprene production via the mevalonic acid pathway in Escherichia coli (bacteria), BioEnergy Res, 5, 814, 10.1007/s12155-012-9192-4
Komaki, 1999, Brasilicardin A, a new terpenoid antibiotic from pathogenic Nocardia brasiliensis: fermentation, isolation and biological activity, J Antibiot (Tokyo), 52, 13, 10.7164/antibiotics.52.13
Komatsu, 2005, SAR studies of brasilicardin A for immunosuppressive and cytotoxic activities, Bioorg Med Chem, 13, 1507, 10.1016/j.bmc.2004.12.029
Ho, 1996, The mechanism of action of cyclosporin A and FK506, Clin Immunol Immunopathol, 80, S40, 10.1006/clin.1996.0140
Usui, 2006, Brasilicardin A, a natural immunosuppressant, targets amino acid transport system L., Chem Biol, 13, 1153, 10.1016/j.chembiol.2006.09.006
Shigemori, 1998, Brasilicardin A. A novel tricyclic metabolite with potent immunosuppressive activity from actinomycete Nocardia brasiliensis, J Org Chem, 63, 6900, 10.1021/jo9807114
Coltart, 2003, Novel synthetic approach to the 8,10-dimethyl anti-syn-anti-perhydrophenanthrene skeleton, Org Lett, 5, 1289, 10.1021/ol034213f
Jung, 2013, Se-phenyl prop-2-eneselenoate: an ethylene equivalent for Diels-Alder reactions, Angew Chem Int Ed Engl, 52, 2060, 10.1002/anie.201208294
Jung, 2015, Synthesis and bioactivity of a brasilicardin a analogue featuring a simplified core, Org Lett, 17, 3608, 10.1021/acs.orglett.5b01712
Schwarz, 2017, The immunosuppressant brasilicardin: determination of the biosynthetic gene cluster in the heterologous host Amycolatopsis japonicum, Biotechnol J
Paramasivan, 2017, Progress in terpene synthesis strategies through engineering of Saccharomyces cerevisiae, Crit Rev Biotechnol, 37, 974, 10.1080/07388551.2017.1299679
Kemper, 2017, Opportunities and challenges for the sustainable production of structurally complex diterpenoids in recombinant microbial systems, Beilstein J Org Chem, 13, 845, 10.3762/bjoc.13.85
Spohn, 2014, Overproduction of Ristomycin A by activation of a silent gene cluster in Amycolatopsis japonicum MG417-CF17, Antimicrob Agents Chemother, 58, 6185, 10.1128/AAC.03512-14
Stegmann, 2001, Development of three different gene cloning systems for genetic investigation of the new species Amycolatopsis japonicum MG417-CF17, the ethylenediaminedisuccinic acid producer, J Biotechnol, 92, 195, 10.1016/S0168-1656(01)00360-1
Komatsu, 2004, New tricyclic terpenoids [correction of terpernoids] from actinomycete Nocardia brasiliensis, Bioorg Med Chem, 12, 5545, 10.1016/j.bmc.2004.08.007
Sambrook, 1989
Kieser, 2000
Bibb, 1985, Cloning and analysis of the promoter region of the erythromycin resistance gene (ermE) of Streptomyces erythraeus, Gene, 38, 215, 10.1016/0378-1119(85)90220-3
Bibb, 1994, The mRNA for the 23S rRNA methylase encoded by the ermE gene of Saccharopolyspora erythraea is translated in the absence of a conventional ribosome-binding site, Mol Microbiol, 14, 533, 10.1111/j.1365-2958.1994.tb02187.x
Schmitt-John, 1992, Promoter constructions for efficient secretion expression in Streptomyces lividans, Appl Microbiol Biotechnol, 36, 493, 10.1007/BF00170190
Saleh, 2012, Activation of a silent phenazine biosynthetic gene cluster reveals a novel natural product and a new resistance mechanism against phenazines, Medchemcomm, 3, 1009, 10.1039/c2md20045g
Paget, 1999, Evidence that the extracytoplasmic function sigma factor sigmaE is required for normal cell wall structure in Streptomyces coelicolor A3(2), J Bacteriol, 181, 204, 10.1128/JB.181.1.204-211.1999
(NCBI)[Internet] NCfBI, 1988
Mann, 1947, On a test of whether one of two random variables is stochastically larger than the other, Ann Math Stat, 18, 50, 10.1214/aoms/1177730491
Buchmann, 2016, High-quality draft genome sequence of the actinobacterium Nocardia terpenica IFM 0406, producer of the immunosuppressant brasilicardins, using illumina and PacBio technologies, Genome Announc, 4, 10.1128/genomeA.01391-16
Stegmann, 2014, Complete genome sequence of the actinobacterium Amycolatopsis japonica MG417-CF17(T) (=DSM 44213T) producing (S,S)-N,N'-ethylenediaminedisuccinic acid, J Biotechnol, 189, 46, 10.1016/j.jbiotec.2014.08.034
Liu, 2017, Engineering microbial cell factories for the production of plant natural products: from design principles to industrial-scale production, Microbial Cell Factories, 16, 125, 10.1186/s12934-017-0732-7
Backhaus, 2017, Manipulation of the precursor supply in yeast significantly enhances the accumulation of prenylated β-carbolines, ACS Synth Biol, 6, 1056, 10.1021/acssynbio.6b00387
Liu, 2001, Precursor supply for polyketide biosynthesis: the role of crotonyl-CoA reductase, Metab Eng, 3, 40, 10.1006/mben.2000.0169
Kuzuyama, 2017, Biosynthetic studies on terpenoids produced by Streptomyces, J Antibiot (Tokyo), 70, 811, 10.1038/ja.2017.12
Bitok, 2012, 2C-Methyl-d-erythritol 4-phosphate enhances and sustains cyclodiphosphate synthase IspF activity, ACS Chem Biol, 7, 1702, 10.1021/cb300243w
Banerjee, 2013, Feedback inhibition of deoxy-D-xylulose 5-phosphate synthase regulates the methyl erythritol 4- phosphate pathway, J Biol Chem, 288, 16926, 10.1074/jbc.M113.464636
Kawasaki, 2003, A relationship between the mevalonate pathway and isoprenoid production in actinomycetes, J Antibiot (Tokyo), 56, 957, 10.7164/antibiotics.56.957
Menon, 2015, A microbial platform for renewable propane synthesis based on a fermentative butanol pathway, Biotechnol Biofuels, 8, 61, 10.1186/s13068-015-0231-1
Schadeweg, 2016, n-Butanol production in Saccharomyces cerevisiae is limited by the availability of coenzyme A and cytosolic acetyl-CoA, Biotechnol Biofuels, 9, 44, 10.1186/s13068-016-0456-7
Tippmann, 2017, Effects of acetoacetyl-CoA synthase expression on production of farnesene in Saccharomyces cerevisiae, J Ind Microbiol Biotechnol, 44, 911, 10.1007/s10295-017-1911-6
Anderson, 1989, Isopentenyl diphosphate:dimethylallyl diphosphate isomerase. An improved purification of the enzyme and isolation of the gene from Saccharomyces cerevisiae, J Biol Chem, 264, 19169, 10.1016/S0021-9258(19)47283-9
Kajiwara, 1997, Expression of an exogenous isopentenyl diphosphate isomerase gene enhances isoprenoid biosynthesis in Escherichia coli, Biochem J, 324, 421, 10.1042/bj3240421
Albrecht, 1999, Metabolic engineering of the terpenoid biosynthetic pathway of Escherichia coli for production of the carotenoids β-carotene and zeaxanthin, Biotechnol Lett, 21, 791, 10.1023/A:1005547827380
Berthelot, 2012, Isopentenyl diphosphate isomerase: a checkpoint to isoprenoid biosynthesis, Biochimie, 94, 1621, 10.1016/j.biochi.2012.03.021
Rohmer, 1993, Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate, Biochem J, 295, 517, 10.1042/bj2950517
Rothman, 2007, Kinetic and spectroscopic characterization of type II isopentenyl diphosphate isomerase from Thermus thermophilus: evidence for formation of substrate-induced flavin species, Biochemistry, 46, 5437, 10.1021/bi0616347
Siddiqui, 2005, Enzymatic and structural characterization of type II isopentenyl diphosphate isomerase from hyperthermophilic archaeon Thermococcus kodakaraensis, Biochem Biophys Res Commun, 331, 1127, 10.1016/j.bbrc.2005.04.029
Hoshino, 2007, Functional analysis of type 1 isopentenyl diphosphate isomerase from Halobacterium sp. NRC-1, Biosci Biotechnol Biochem, 71, 2588, 10.1271/bbb.70330