Engineering heterogeneous semiconductors for solar water splitting

Journal of Materials Chemistry A - Tập 3 Số 6 - Trang 2485-2534
Xin Li1,2,3,4, Jiaguo Yu5,6,7,8,9, Jingxiang Low7,8,9,10, Yueping Fang1,2,3,4, Jing Xiao1,11,12,13, Xiaobo Chen14,15,16
1China
2College of Science, South China Agricultural University, Guangzhou 510642, China
3Guangzhou 510642
4South China Agricultural University
5Department of Physics
6Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
7P. R. China
8State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Wuhan, P. R. China
9Wuhan
10Wuhan University of Technology
11Guangzhou 510640
12School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
13South China University of Technology
14Department of Chemistry, University of Missouri—Kansas City, Kansas City, USA
15Kansas City
16University of Missouri–Kansas City

Tóm tắt

Recent progress and strategies toward solar water splitting over heterogeneous semiconductors are reviewed and the challenges and future perspectives are suggested.

Từ khóa


Tài liệu tham khảo

Lewis, 2006, Proc. Natl. Acad. Sci. U. S. A., 103, 15729, 10.1073/pnas.0603395103

Goldemberg, 2007, Science, 315, 808, 10.1126/science.1137013

Gratzel, 2001, Nature, 414, 338, 10.1038/35104607

Walter, 2010, Chem. Rev., 110, 6446, 10.1021/cr1002326

Schlapbach, 2001, Nature, 414, 353, 10.1038/35104634

Turner, 2004, Science, 305, 972, 10.1126/science.1103197

Navarro, 2007, Chem. Rev., 107, 3952, 10.1021/cr0501994

Hammarström, 2011, Science, 333, 288, 10.1126/science.333.6040.288-a

Linic, 2011, Nat. Mater., 10, 911, 10.1038/nmat3151

Fujishima, 1972, Nature, 238, 37, 10.1038/238037a0

Kanan, 2008, Science, 321, 1072, 10.1126/science.1162018

Kudo, 2009, Chem. Soc. Rev., 38, 253, 10.1039/B800489G

Chen, 2010, Chem. Rev., 110, 6503, 10.1021/cr1001645

Moriya, 2013, Coord. Chem. Rev., 257, 1957, 10.1016/j.ccr.2013.01.021

Esswein, 2007, Chem. Rev., 107, 4022, 10.1021/cr050193e

Bard, 1995, Acc. Chem. Res., 28, 141, 10.1021/ar00051a007

Maeda, 2007, J. Phys. Chem. C, 111, 7851, 10.1021/jp070911w

Kudo, 1999, J. Am. Chem. Soc., 121, 11459, 10.1021/ja992541y

Hitoki, 2002, Chem. Lett., 31, 736, 10.1246/cl.2002.736

Hitoki, 2002, Chem. Commun., 38, 1698, 10.1039/B202393H

Maeda, 2006, Nature, 440, 295, 10.1038/440295a

Liao, 2014, Nat. Nanotechnol., 9, 69, 10.1038/nnano.2013.272

Yi, 2010, Nat. Mater., 9, 559, 10.1038/nmat2780

Wang, 2009, Nat. Mater., 8, 76, 10.1038/nmat2317

Bard, 2010, J. Am. Chem. Soc., 132, 7559, 10.1021/ja101578m

Maeda, 2011, J. Photochem. Photobiol., C, 12, 237, 10.1016/j.jphotochemrev.2011.07.001

Hoffmann, 1995, Chem. Rev., 95, 69, 10.1021/cr00033a004

Park, 2013, J. Photochem. Photobiol., C, 15, 1, 10.1016/j.jphotochemrev.2012.10.001

Chen, 2010, J. Mater. Res., 25, 3, 10.1557/JMR.2010.0020

Rothenberger, 1992, J. Phys. Chem., 96, 5983, 10.1021/j100193a062

S. R. Morrison , Electrochemistry at semiconductor and oxidized metal electrodes, Plenum, New York, 1980

Bolts, 1976, J. Phys. Chem., 80, 2641, 10.1021/j100565a004

Inoue, 1979, Bull. Chem. Soc. Jpn., 52, 1243, 10.1246/bcsj.52.1243

Buehler, 1984, J. Phys. Chem., 88, 3261, 10.1021/j150659a025

Osterloh, 2007, Chem. Mater., 20, 35, 10.1021/cm7024203

Zhou, 2012, J. Mater. Chem., 22, 21337, 10.1039/c2jm31902k

Wang, 2014, Chem. Soc. Rev., 43, 7188, 10.1039/C4CS00145A

Fukuzumi, 2013, J. Phys. Chem. Lett., 4, 3458, 10.1021/jz401560x

Du, 2012, Energy Environ. Sci., 5, 6012, 10.1039/c2ee03250c

Sayama, 1993, J. Phys. Chem., 97, 531, 10.1021/j100105a001

Kudo, 2000, J. Phys. Chem. B, 104, 571, 10.1021/jp9919056

Yoshino, 2002, Chem. Mater., 14, 3369, 10.1021/cm0109037

Sato, 2004, J. Phys. Chem. B, 108, 4369, 10.1021/jp0373189

Ikarashi, 2002, J. Phys. Chem. B, 106, 9048, 10.1021/jp020539e

Kato, 2003, J. Am. Chem. Soc., 125, 3082, 10.1021/ja027751g

Kato, 1998, Chem. Phys. Lett., 295, 487, 10.1016/S0009-2614(98)01001-X

Takahara, 2001, Chem. Mater., 13, 1194, 10.1021/cm000572i

Sato, 2005, J. Am. Chem. Soc., 127, 4150, 10.1021/ja042973v

Reber, 1984, J. Phys. Chem., 88, 5903, 10.1021/j150668a032

Ikeda, 1998, Chem. Mater., 10, 72, 10.1021/cm970221c

Kudo, 1988, J. Catal., 111, 67, 10.1016/0021-9517(88)90066-8

Domen, 1986, J. Chem. Soc., Chem. Commun., 22, 356, 10.1039/c39860000356

Yamaguti, 1985, J. Chem. Soc., Faraday Trans. 1, 81, 1237, 10.1039/f19858101237

Domen, 1986, J. Phys. Chem., 90, 292, 10.1021/j100274a018

Kim, 2004, J. Am. Chem. Soc., 126, 8912, 10.1021/ja049676a

Kudo, 1999, Chem. Lett., 1999, 1103, 10.1246/cl.1999.1103

Dhanasekaran, 2012, Int. J. Hydrogen Energy, 37, 4897, 10.1016/j.ijhydene.2011.12.068

Erbs, 1984, J. Phys. Chem., 88, 4001, 10.1021/j150662a028

Wang, 2008, ACS Nano, 2, 1492, 10.1021/nn800223s

Zou, 2001, Nature, 414, 625, 10.1038/414625a

Konta, 2004, J. Phys. Chem. B, 108, 8992, 10.1021/jp049556p

Paracchino, 2011, Nat. Mater., 10, 456, 10.1038/nmat3017

Konta, 2003, Phys. Chem. Chem. Phys., 5, 3061, 10.1039/b300179b

Maeda, 2005, J. Am. Chem. Soc., 127, 8286, 10.1021/ja0518777

Maeda, 2006, J. Catal., 243, 303, 10.1016/j.jcat.2006.07.023

Higashi, 2011, Energy Environ. Sci., 4, 4138, 10.1039/c1ee01878g

Kudo, 1999, Catal. Lett., 58, 241, 10.1023/A:1019067025917

Kalyanasundaram, 1981, Angew. Chem., Int. Ed., 20, 987, 10.1002/anie.198109871

Tsuji, 2004, J. Am. Chem. Soc., 126, 13406, 10.1021/ja048296m

Lei, 2003, Chem. Commun., 39, 2142, 10.1039/b306813g

Li, 2012, Adv. Mater., 25, 125, 10.1002/adma.201202582

Kasahara, 2002, J. Phys. Chem. A, 106, 6750, 10.1021/jp025961+

Zhang, 2012, J. Am. Chem. Soc., 134, 8348, 10.1021/ja301726c

Ishikawa, 2002, J. Am. Chem. Soc., 124, 13547, 10.1021/ja0269643

Holmes, 2012, Chem. Commun., 48, 371, 10.1039/C1CC16082F

Bessekhouad, 2002, Sol. Energy Mater. Sol. Cells, 73, 339, 10.1016/S0927-0248(01)00218-5

Hao, 2012, Int. J. Hydrogen Energy, 37, 15038, 10.1016/j.ijhydene.2012.08.021

Wang, 2009, J. Am. Chem. Soc., 131, 1680, 10.1021/ja809307s

Cao, 2014, J. Phys. Chem. Lett., 5, 2101, 10.1021/jz500546b

McKone, 2013, J. Am. Chem. Soc., 135, 223, 10.1021/ja308581g

Liu, 2004, Chem. Commun., 40, 2192, 10.1039/B407892F

Chen, 2014, Appl. Surf. Sci., 316, 590, 10.1016/j.apsusc.2014.08.053

Bui, 2013, Appl. Surf. Sci., 274, 328, 10.1016/j.apsusc.2013.03.054

McKone, 2011, Energy Environ. Sci., 4, 3573, 10.1039/c1ee01488a

Warren, 2012, Energy Environ. Sci., 5, 9653, 10.1039/c2ee23192a

McKone, 2012, ACS Catal., 3, 166, 10.1021/cs300691m

Xiao, 2012, Energy Environ. Sci., 5, 7869, 10.1039/c2ee22146b

Nocera, 2012, Acc. Chem. Res., 45, 767, 10.1021/ar2003013

Reece, 2011, Science, 334, 645, 10.1126/science.1209816

Raj, 1990, J. Appl. Electrochem., 20, 32, 10.1007/BF01012468

Zong, 2008, J. Am. Chem. Soc., 130, 7176, 10.1021/ja8007825

Merki, 2011, Chem. Sci., 2, 1262, 10.1039/C1SC00117E

Vrubel, 2012, Energy Environ. Sci., 5, 6136, 10.1039/c2ee02835b

Xiang, 2012, J. Am. Chem. Soc., 134, 6575, 10.1021/ja302846n

Chang, 2013, Adv. Mater., 25, 756, 10.1002/adma.201202920

Lin, 2013, Appl. Catal., B, 134–135, 75, 10.1016/j.apcatb.2013.01.004

Hou, 2011, Nat. Mater., 10, 434, 10.1038/nmat3008

Hou, 2013, Angew. Chem., Int. Ed., 52, 3621, 10.1002/anie.201210294

Zhang, 2013, Phys. Chem. Chem. Phys., 15, 12088, 10.1039/c3cp50734c

Zhang, 2014, Adv. Energy Mater., 4, 1301925, 10.1002/aenm.201301925

Zhang, 2011, Nano Lett., 11, 4774, 10.1021/nl202587b

Sun, 2013, J. Am. Chem. Soc., 135, 17699, 10.1021/ja4094764

Zhu, 2014, Int. J. Hydrogen Energy, 39, 11873, 10.1016/j.ijhydene.2014.06.025

Zong, 2011, J. Phys. Chem. C, 115, 12202, 10.1021/jp2006777

Tran, 2012, Energy Environ. Sci., 5, 8912, 10.1039/c2ee22611a

Tran, 2013, Energy Environ. Sci., 6, 2452, 10.1039/c3ee40600h

Higashi, 2012, J. Am. Chem. Soc., 134, 6968, 10.1021/ja302059g

Smith, 2013, Science, 340, 60, 10.1126/science.1233638

Singh, 2013, Energy Environ. Sci., 6, 579, 10.1039/C2EE23862D

Du, 2014, Appl. Surf. Sci., 305, 235, 10.1016/j.apsusc.2014.03.043

Yu, 2010, Chem.–Asian J., 5, 2499, 10.1002/asia.201000550

Yu, 2011, J. Colloid Interface Sci., 357, 223, 10.1016/j.jcis.2011.01.101

Bandara, 2005, Photochem. Photobiol. Sci., 4, 857, 10.1039/b507816d

Yu, 2014, J. Mater. Chem. A, 2, 20823, 10.1039/C4TA05315J

Li, 2013, Nat. Commun., 4, 1432, 10.1038/ncomms2401

Gerken, 2014, Energy Environ. Sci., 7, 2376, 10.1039/C4EE00436A

Haber, 2014, Energy Environ. Sci., 7, 682, 10.1039/C3EE43683G

Yu, 2011, J. Phys. Chem. C, 115, 4953, 10.1021/jp111562d

Ran, 2011, Green Chem., 13, 2708, 10.1039/c1gc15465f

Yu, 2013, Catal. Sci. Technol., 3, 1782, 10.1039/c3cy20878h

Chen, 2015, Appl. Surf. Sci., 324, 432, 10.1016/j.apsusc.2014.10.114

Yu, 2011, Energy Environ. Sci., 4, 1364, 10.1039/c0ee00729c

Subbaraman, 2012, Nat. Mater., 11, 550, 10.1038/nmat3313

Zhang, 2014, ACS Appl. Mater. Interfaces, 6, 13406, 10.1021/am501216b

Kim, 2014, Science, 343, 990, 10.1126/science.1246913

Seabold, 2012, J. Am. Chem. Soc., 134, 2186, 10.1021/ja209001d

Chemelewski, 2014, J. Am. Chem. Soc., 136, 2843, 10.1021/ja411835a

Chemelewski, 2014, J. Mater. Chem. A, 2, 14957, 10.1039/C4TA03078H

Jin, 2014, J. Mater. Chem. A, 2, 18593, 10.1039/C4TA04434G

Popczun, 2013, J. Am. Chem. Soc., 135, 9267, 10.1021/ja403440e

Cao, 2014, Chem. Commun., 50, 10427, 10.1039/C4CC05026F

Pan, 2014, J. Mater. Chem. A, 10.1039/c4ta04867a

Popczun, 2014, Angew. Chem., Int. Ed., 53, 5427, 10.1002/anie.201402646

Tian, 2014, J. Am. Chem. Soc., 136, 7587, 10.1021/ja503372r

Xiao, 2014, Energy Environ. Sci., 7, 2624, 10.1039/C4EE00957F

Xing, 2014, Adv. Mater., 26, 5702, 10.1002/adma.201401692

Liu, 2014, J. Mater. Chem. A, 2, 17263, 10.1039/C4TA03638G

Surendranath, 2009, J. Am. Chem. Soc., 131, 2615, 10.1021/ja807769r

Cobo, 2012, Nat. Mater., 11, 802, 10.1038/nmat3385

Zhang, 2014, J. Mater. Chem. A, 2, 20182, 10.1039/C4TA05278A

Vrubel, 2012, Angew. Chem., Int. Ed., 51, 12703, 10.1002/anie.201207111

Yang, 2014, Adv. Energy Mater., 4, 1400057, 10.1002/aenm.201400057

Bediako, 2012, J. Am. Chem. Soc., 134, 6801, 10.1021/ja301018q

Bediako, 2013, J. Am. Chem. Soc., 135, 3662, 10.1021/ja3126432

Dincă, 2010, Proc. Natl. Acad. Sci. U. S. A., 107, 10337, 10.1073/pnas.1001859107

Esswein, 2011, Energy Environ. Sci., 4, 499, 10.1039/C0EE00518E

Jang, 2008, Appl. Catal., A, 346, 149, 10.1016/j.apcata.2008.05.020

Garcia-Esparza, 2013, ChemSusChem, 6, 168, 10.1002/cssc.201200780

Liao, 2014, Energy Environ. Sci., 7, 387, 10.1039/C3EE42441C

Chen, 2013, Energy Environ. Sci., 6, 1818, 10.1039/c3ee40596f

Chen, 2012, Angew. Chem., Int. Ed., 51, 6131, 10.1002/anie.201200699

Bao, 2007, Chem. Mater., 20, 110, 10.1021/cm7029344

Subbaraman, 2011, Science, 334, 1256, 10.1126/science.1211934

Nguyen, 2013, Nanoscale, 5, 1479, 10.1039/c2nr34037b

Ran, 2014, Chem. Soc. Rev., 43, 7787, 10.1039/C3CS60425J

Katz, 2009, Energy Environ. Sci., 2, 103, 10.1039/B812177J

Ye, 2010, J. Phys. Chem. C, 114, 13322, 10.1021/jp104343b

Wu, 2013, Energy Environ. Sci., 6, 157, 10.1039/C2EE23482C

Hagfeldt, 1995, Chem. Rev., 95, 49, 10.1021/cr00033a003

Tauc, 1966, Phys. Status Solidi B, 15, 627, 10.1002/pssb.19660150224

Rettie, 2013, J. Am. Chem. Soc., 135, 11389, 10.1021/ja405550k

Frank, 1975, J. Am. Chem. Soc., 97, 7427, 10.1021/ja00859a007

Chun, 2003, J. Phys. Chem. B, 107, 1798, 10.1021/jp027593f

Chen, 2011, Science, 331, 746, 10.1126/science.1200448

Wu, 2014, J. Am. Chem. Soc., 136, 7708, 10.1021/ja5023893

Demortière, 2014, J. Am. Chem. Soc., 136, 2342, 10.1021/ja4092616

Wilker, 2014, J. Am. Chem. Soc., 136, 4316, 10.1021/ja413001p

Bhattacharya, 2013, J. Phys. Chem. C, 117, 9633, 10.1021/jp308629q

Bak, 2002, Int. J. Hydrogen Energy, 27, 991, 10.1016/S0360-3199(02)00022-8

Cho, 2012, Angew. Chem., Int. Ed., 51, 12740, 10.1002/anie.201206789

Kenney, 2013, Science, 342, 836, 10.1126/science.1241327

Hu, 2014, Science, 344, 1005, 10.1126/science.1251428

Liu, 2014, Angew. Chem., Int. Ed., 53, 7295, 10.1002/anie.201404697

Park, 2013, ChemPhysChem, 14, 2277, 10.1002/cphc.201201044

Wang, 2013, ACS Nano, 7, 8728, 10.1021/nn403082m

Cho, 2014, Energy Environ. Sci., 7, 2301, 10.1039/c3ee43965h

Wang, 2014, Nano Lett., 14, 18, 10.1021/nl402205f

Khaselev, 1998, Science, 280, 425, 10.1126/science.280.5362.425

Rocheleau, 1998, Energy Fuels, 12, 3, 10.1021/ef9701347

Licht, 2000, J. Phys. Chem. B, 104, 8920, 10.1021/jp002083b

Cho, 2013, Nat. Commun., 4, 1723, 10.1038/ncomms2729

Tong, 2014, Nanoscale, 6, 6692, 10.1039/C4NR00602J

Choi, 2014, J. Mater. Chem. A, 2, 2928, 10.1039/c3ta14443g

Kang, 2013, J. Mater. Chem. A, 1, 5766, 10.1039/c3ta10689f

Seger, 2013, J. Am. Chem. Soc., 135, 1057, 10.1021/ja309523t

Esposito, 2013, Nat. Mater., 12, 562, 10.1038/nmat3626

Yang, 2014, J. Am. Chem. Soc., 136, 6191, 10.1021/ja501513t

Lublow, 2014, J. Mater. Chem. A, 2, 12697, 10.1039/C4TA01711K

Pilli, 2011, Energy Environ. Sci., 4, 5028, 10.1039/c1ee02444b

Luo, 2011, Energy Environ. Sci., 4, 4046, 10.1039/c1ee01812d

Zhou, 2014, ACS Nano, 8, 7088, 10.1021/nn501996a

He, 2014, J. Mater. Chem. A, 2, 9371, 10.1039/C4TA00895B

Abdi, 2013, Nat. Commun., 4, 7, 10.1038/ncomms3195

Ding, 2014, Phys. Chem. Chem. Phys., 16, 15608, 10.1039/C4CP02391A

Ho-Kimura, 2014, J. Mater. Chem. A, 2, 3948, 10.1039/c3ta15268e

Moniz, 2014, Adv. Energy Mater., 4, 1301590, 10.1002/aenm.201301590

Rao, 2014, Nano Lett., 14, 1099, 10.1021/nl500022z

Chae, 2014, J. Mater. Chem. A, 2, 11408, 10.1039/c4ta00702f

Li, 2013, Nat. Commun., 4, 2566, 10.1038/ncomms3566

Li, 2013, Angew. Chem., Int. Ed., 52, 11016, 10.1002/anie.201305350

Liao, 2012, Adv. Funct. Mater., 22, 3066, 10.1002/adfm.201102966

Hou, 2013, Energy Environ. Sci., 6, 3322, 10.1039/c3ee41854e

Cong, 2012, Chem. Mater., 24, 579, 10.1021/cm203269n

Abe, 2010, J. Am. Chem. Soc., 132, 11828, 10.1021/ja1016552

Wang, 2012, J. Mater. Chem., 22, 21972, 10.1039/c2jm35374a

Kim, 2013, J. Am. Chem. Soc., 135, 5375, 10.1021/ja308723w

Minegishi, 2013, Chem. Sci., 4, 1120, 10.1039/c2sc21845c

Alexander, 2008, J. Mater. Chem., 18, 2298, 10.1039/b718644d

Liu, 2011, Angew. Chem., Int. Ed., 50, 499, 10.1002/anie.201004801

Seabold, 2011, Chem. Mater., 23, 1105, 10.1021/cm1019469

Wang, 2012, Energy Environ. Sci., 5, 6180, 10.1039/c2ee03158b

Zhang, 2013, J. Mater. Chem. A, 1, 10677, 10.1039/c3ta12273e

Hou, 2014, Adv. Mater., 26, 5043, 10.1002/adma.201401032

Tilley, 2010, Angew. Chem., Int. Ed., 49, 6405, 10.1002/anie.201003110

Brillet, 2010, Nano Lett., 10, 4155, 10.1021/nl102708c

Kim, 2013, Sci. Rep., 3, 2681, 10.1038/srep02681

Zhang, 2014, J. Phys. Chem. C, 118, 16842, 10.1021/jp500395a

Gurudayal, 2014, ACS Appl. Mater. Interfaces, 6, 5852, 10.1021/am500643y

Fu, 2014, J. Mater. Chem. A, 2, 13705, 10.1039/C4TA02527J

Bak, 2014, J. Mater. Chem. A, 2, 17249, 10.1039/C4TA03578J

Morales-Guio, 2014, Nat. Commun., 5, 3059, 10.1038/ncomms4059

Zhang, 2012, J. Mater. Chem., 22, 2456, 10.1039/C1JM14478B

Lin, 2012, Chem. Sci., 3, 3482, 10.1039/c2sc20874a

Martinez-Garcia, 2013, J. Mater. Chem. A, 1, 15235, 10.1039/c3ta13912c

Zhang, 2013, ACS Nano, 7, 1709, 10.1021/nn3057092

Huang, 2013, J. Mater. Chem. A, 1, 2418, 10.1039/C2TA00918H

Dubale, 2014, J. Mater. Chem. A, 2, 18383, 10.1039/C4TA03464C

Moriya, 2013, J. Am. Chem. Soc., 135, 3733, 10.1021/ja312653y

Zhang, 2014, Phys. Chem. Chem. Phys., 16, 6167, 10.1039/c3cp54590c

Yang, 2013, Sci. Rep., 3, 1286, 10.1038/srep01286

Wang, 2012, J. Am. Chem. Soc., 134, 11056, 10.1021/ja301765v

Deshpande, 2014, J. Mater. Chem. A, 2, 492, 10.1039/C3TA13851H

Kelkar, 2013, J. Mater. Chem. A, 1, 12426, 10.1039/c3ta12793a

Maeda, 2008, J. Catal., 254, 198, 10.1016/j.jcat.2007.12.009

Kato, 2001, J. Phys. Chem. B, 105, 4285, 10.1021/jp004386b

Wang, 2012, Angew. Chem., Int. Ed., 51, 13089, 10.1002/anie.201207554

Wang, 2014, J. Mater. Chem. A, 2, 8815, 10.1039/C4TA01393J

Maeda, 2014, Catal. Sci. Technol., 4, 1949, 10.1039/C4CY00251B

Maeda, 2013, Chem. Commun., 49, 8404, 10.1039/c3cc44151b

Pan, 2013, J. Mater. Chem. A, 1, 6629, 10.1039/c3ta01553j

Kibria, 2014, Nat. Commun., 5, 3825, 10.1038/ncomms4825

Wang, 2014, J. Mater. Chem. A, 2, 3847, 10.1039/C3TA14908K

Su, 2014, ACS Nano, 8, 3490, 10.1021/nn500963m

Yan, 2014, J. Phys. Chem. C, 118, 23519, 10.1021/jp507087k

Tian, 2014, J. Mater. Chem. A, 2, 6432, 10.1039/C3TA15254E

Zhou, 2010, Adv. Mater., 22, 951, 10.1002/adma.200902039

Xiang, 2011, Nanoscale, 3, 3670, 10.1039/c1nr10610d

Zhao, 2014, Energy Environ. Sci., 7, 1700, 10.1039/c3ee43165g

Cherevan, 2014, Energy Environ. Sci., 7, 791, 10.1039/C3EE42558D

Li, 2014, Small, 10.1002/smll.201401770

Zhang, 2014, Chem. Commun., 50, 2002, 10.1039/c3cc48026g

Ni, 2013, Chem. Commun., 49, 10094, 10.1039/c3cc45222k

Asai, 2014, Chem. Commun., 50, 2543, 10.1039/C3CC49279F

Li, 2014, Int. J. Hydrogen Energy, 39, 731, 10.1016/j.ijhydene.2013.10.092

Almeida, 2014, Int. J. Hydrogen Energy, 39, 1220, 10.1016/j.ijhydene.2013.11.019

Mahapure, 2013, J. Mater. Chem. A, 1, 12835, 10.1039/c3ta12883k

Xu, 2012, Nat. Mater., 11, 595, 10.1038/nmat3312

Dai, 2014, Nat. Commun., 5, 3605, 10.1038/ncomms4605

Li, 2011, J. Am. Chem. Soc., 133, 10878, 10.1021/ja2025454

Tang, 2011, Angew. Chem., Int. Ed., 50, 10203, 10.1002/anie.201104412

Amirav, 2010, J. Phys. Chem. Lett., 1, 1051, 10.1021/jz100075c

Yu, 2012, RSC Adv., 2, 11829, 10.1039/c2ra22019a

Jin, 2013, J. Mater. Chem. A, 1, 10927, 10.1039/c3ta12301d

Xiang, 2013, Appl. Catal., B, 138, 299, 10.1016/j.apcatb.2013.03.005

Hu, 2013, J. Mater. Chem. A, 1, 12221, 10.1039/c3ta12407j

Fang, 2013, Nanoscale, 5, 9830, 10.1039/c3nr03043a

Chang, 2014, ACS Nano, 8, 7078, 10.1021/nn5019945

Yan, 2009, J. Catal., 266, 165, 10.1016/j.jcat.2009.06.024

Ma, 2008, J. Catal., 260, 134, 10.1016/j.jcat.2008.09.017

Cao-Thang, 2013, J. Mater. Chem. A, 1, 13308, 10.1039/c3ta12914d

Han, 2012, Science, 338, 1321, 10.1126/science.1227775

Li, 2013, Adv. Mater., 25, 6613, 10.1002/adma.201302908

Xie, 2014, Energy Environ. Sci., 7, 1895, 10.1039/c3ee43750g

Hou, 2013, Phys. Chem. Chem. Phys., 15, 15660, 10.1039/c3cp51857d

Zhang, 2012, Nano Lett., 12, 4584, 10.1021/nl301831h

Ran, 2014, ChemSusChem, 7, 3426, 10.1002/cssc.201402574

Li, 2014, Chem.–Eur. J., 20, 1176, 10.1002/chem.201303446

Li, 2013, ACS Catal., 3, 882, 10.1021/cs4000975

Liu, 2013, Nat. Commun., 4, 2278, 10.1038/ncomms3278

Chai, 2011, J. Phys. Chem. C, 115, 6149, 10.1021/jp1112729

Shang, 2013, J. Mater. Chem. A, 1, 4552, 10.1039/c3ta01685d

Wei, 2014, Appl. Catal., B, 144, 521, 10.1016/j.apcatb.2013.07.064

Zhang, 2008, J. Phys. Chem. C, 112, 17635, 10.1021/jp8059008

Tsuji, 2005, Angew. Chem., Int. Ed., 44, 3565, 10.1002/anie.200500314

Tang, 2013, J. Mater. Chem. A, 1, 6359, 10.1039/c3ta01602a

Yu, 2014, J. Mater. Chem. A, 2, 12317, 10.1039/C4TA01315H

Yu, 2014, J. Am. Chem. Soc., 136, 9236, 10.1021/ja502076b

Wang, 2012, J. Mater. Chem., 22, 6553, 10.1039/c2jm16515e

Chen, 2013, J. Mater. Chem. A, 1, 4316, 10.1039/c3ta01491f

Liu, 2014, J. Mater. Chem. A, 2, 4619, 10.1039/c3ta15342h

Wang, 2013, Energy Environ. Sci., 6, 2134, 10.1039/c3ee24370b

Zhang, 2014, Energy Environ. Sci., 7, 1902, 10.1039/c3ee44189j

Martin, 2014, Angew. Chem., Int. Ed., 53, 9240, 10.1002/anie.201403375

Min, 2012, J. Phys. Chem. C, 116, 19644, 10.1021/jp304022f

Wang, 2013, Catal. Sci. Technol., 3, 1703, 10.1039/c3cy20836b

Xiang, 2011, J. Phys. Chem. C, 115, 7355, 10.1021/jp200953k

Sun, 2012, Nat. Commun., 3, 1139, 10.1038/ncomms2152

Cao, 2013, Int. J. Hydrogen Energy, 38, 1258, 10.1016/j.ijhydene.2012.10.116

Zhu, 2012, Adv. Energy Mater., 2, 1497, 10.1002/aenm.201200269

Bai, 2014, Adv. Mater., 26, 5689, 10.1002/adma.201401817

Zhao, 2014, J. Phys. Chem. C, 118, 14238, 10.1021/jp504005x

Martha, 2014, J. Mater. Chem. A, 2, 3621, 10.1039/c3ta14285j

Li, 2013, J. Mater. Chem. A, 1, 4190, 10.1039/c3ta10394c

Huo, 2014, J. Mater. Chem. A, 2, 11040, 10.1039/C4TA02207F

Lee, 2013, Catal. Sci. Technol., 3, 1694, 10.1039/c3cy00054k

Hisatomi, 2013, Energy Environ. Sci., 6, 3595, 10.1039/c3ee42951b

Ma, 2012, J. Am. Chem. Soc., 134, 19993, 10.1021/ja3095747

Shi, 2012, Chem.–Eur. J., 18, 3157, 10.1002/chem.201102214

Li, 2012, J. Phys. Chem. C, 117, 376, 10.1021/jp310138b

Zhu, 2013, Energy Environ. Sci., 6, 987, 10.1039/c2ee24148j

Meng, 2013, ACS Catal., 3, 746, 10.1021/cs300740e

Zhao, 2014, Chem. Sci., 5, 951, 10.1039/C3SC52546E

Kim, 2014, J. Mater. Chem. A, 2, 4136, 10.1039/c3ta14933a

Primo, 2011, J. Am. Chem. Soc., 133, 6930, 10.1021/ja2011498

Bard, 1979, J. Photochem., 10, 59, 10.1016/0047-2670(79)80037-4

Bard, 1980, Science, 207, 139, 10.1126/science.207.4427.139

Bard, 1982, J. Phys. Chem., 86, 172, 10.1021/j100391a008

Nakata, 2012, J. Photochem. Photobiol., C, 13, 169, 10.1016/j.jphotochemrev.2012.06.001

Linsebigler, 1995, Chem. Rev., 95, 735, 10.1021/cr00035a013

Zhou, 2012, Energy Environ. Sci., 5, 6732, 10.1039/c2ee03447f

Tachibana, 2012, Nat. Photonics, 6, 511, 10.1038/nphoton.2012.175

Bryan, 2005, Prog. Inorg. Chem., 54, 47, 10.1002/0471725560.ch2

Queisser, 1998, Science, 281, 945, 10.1126/science.281.5379.945

Serpone, 2012, J. Phys. Chem. Lett., 3, 673, 10.1021/jz300071j

Mocatta, 2011, Science, 332, 77, 10.1126/science.1196321

Cao, 2011, Science, 332, 48, 10.1126/science.1203702

Liu, 2010, J. Mater. Chem., 20, 831, 10.1039/B909930A

Wang, 2014, Appl. Surf. Sci., 292, 161, 10.1016/j.apsusc.2013.11.105

Diebold, 2011, Nat. Chem., 3, 271, 10.1038/nchem.1019

Liu, 2013, J. Mater. Chem. A, 1, 1553, 10.1039/C2TA00522K

Nagpal, 2011, Nat. Commun., 2, 486, 10.1038/ncomms1492

Maeda, 2013, Angew. Chem., Int. Ed., 52, 6488, 10.1002/anie.201301357

Park, 2011, J. Phys. Chem. C, 115, 17870, 10.1021/jp204492r

Cao, 2014, Energy Environ. Sci., 7, 752, 10.1039/C3EE42722F

Asahi, 2001, Science, 293, 269, 10.1126/science.1061051

Serpone, 2006, J. Phys. Chem. B, 110, 24287, 10.1021/jp065659r

Liu, 2009, J. Am. Chem. Soc., 131, 12868, 10.1021/ja903463q

Mukherji, 2011, ACS Nano, 5, 3483, 10.1021/nn102469e

Liu, 2010, J. Am. Chem. Soc., 132, 11642, 10.1021/ja103798k

Fujishima, 2008, Surf. Sci. Rep., 63, 515, 10.1016/j.surfrep.2008.10.001

Zhang, 2010, Energy Environ. Sci., 3, 715, 10.1039/b927575d

Park, 2006, Nano Lett., 6, 24, 10.1021/nl051807y

Jo, 2012, Angew. Chem., Int. Ed., 51, 3147, 10.1002/anie.201108276

Liu, 2014, Energy Environ. Sci., 7, 2592, 10.1039/C4EE00472H

Marschall, 2014, Catal. Today, 225, 111, 10.1016/j.cattod.2013.10.088

Hoang, 2012, J. Am. Chem. Soc., 134, 3659, 10.1021/ja211369s

Liu, 2012, Energy Environ. Sci., 5, 9603, 10.1039/c2ee22930g

Osterloh, 2013, Chem. Soc. Rev., 42, 2294, 10.1039/C2CS35266D

Wang, 2008, J. Am. Chem. Soc., 130, 2724, 10.1021/ja710805x

Suzuki, 2012, Phys. Chem. Chem. Phys., 14, 15475, 10.1039/c2cp43132g

Higashi, 2013, J. Am. Chem. Soc., 135, 10238, 10.1021/ja404030x

Joshi, 2010, J. Phys. Chem. Lett., 1, 2719, 10.1021/jz100961d

Wang, 2012, Nanoscale, 4, 2046, 10.1039/c2nr11972b

Wang, 2011, Catal. Sci. Technol., 1, 940, 10.1039/c1cy00143d

Yu, 2010, Green Chem., 12, 1611, 10.1039/c0gc00236d

Zhang, 2013, Catal. Sci. Technol., 3, 1672, 10.1039/c3cy00018d

Hill, 2013, Energy Environ. Sci., 6, 2440, 10.1039/c3ee40827b

Liu, 2010, J. Phys. Chem. C, 114, 20997, 10.1021/jp1058116

Ye, 2011, J. Phys. Chem. C, 115, 12464, 10.1021/jp200852c

Zhang, 2011, J. Phys. Chem. C, 115, 2592, 10.1021/jp110482v

Townsend, 2012, ACS Nano, 6, 7420, 10.1021/nn302647u

Lira, 2011, J. Am. Chem. Soc., 133, 6529, 10.1021/ja200884w

Long, 2013, J. Am. Chem. Soc., 135, 18892, 10.1021/ja408936j

Lei, 2014, J. Am. Chem. Soc., 136, 6826, 10.1021/ja501866r

Pan, 2013, Nanoscale, 5, 3601, 10.1039/c3nr00476g

Wang, 2012, Nanoscale, 4, 6682, 10.1039/c2nr32222f

Lu, 2012, Chem. Commun., 48, 7717, 10.1039/c2cc31773g

Wang, 2013, J. Phys. Chem. C, 117, 10957, 10.1021/jp401972h

Ling, 2012, Angew. Chem., Int. Ed., 51, 4074, 10.1002/anie.201107467

Pesci, 2013, J. Phys. Chem. C, 117, 25837, 10.1021/jp4099914

Xia, 2013, Adv. Energy Mater., 3, 1516, 10.1002/aenm.201300294

Zuo, 2010, J. Am. Chem. Soc., 132, 11856, 10.1021/ja103843d

Kong, 2011, J. Am. Chem. Soc., 133, 16414, 10.1021/ja207826q

Zhuang, 2010, Langmuir, 26, 9686, 10.1021/la100302m

Chen, 2012, Chem. Soc. Rev., 41, 7909, 10.1039/c2cs35230c

Grätzel, 1981, Acc. Chem. Res., 14, 376, 10.1021/ar00072a003

Zhang, 1998, J. Phys. Chem. B, 102, 10871, 10.1021/jp982948+

Wu, 2010, J. Am. Chem. Soc., 132, 6679, 10.1021/ja909456f

Townsend, 2011, Energy Environ. Sci., 4, 4270, 10.1039/c1ee02110a

Bao, 2007, J. Phys. Chem. C, 111, 17527, 10.1021/jp076566s

Sathish, 2006, Int. J. Hydrogen Energy, 31, 891, 10.1016/j.ijhydene.2005.08.002

Yuliati, 2010, J. Mater. Chem., 20, 4295, 10.1039/c0jm00341g

Jiang, 2013, Int. J. Hydrogen Energy, 38, 12739, 10.1016/j.ijhydene.2013.07.072

Beydoun, 1999, J. Nanopart. Res., 1, 439, 10.1023/A:1010044830871

Hong, 2009, Int. J. Hydrogen Energy, 34, 3234, 10.1016/j.ijhydene.2009.02.006

Jasieniak, 2011, ACS Nano, 5, 5888, 10.1021/nn201681s

Law, 2004, Annu. Rev. Mater. Res., 34, 83, 10.1146/annurev.matsci.34.040203.112300

Zhang, 2011, MRS Bull., 36, 48, 10.1557/mrs.2010.9

Yang, 2009, Nano Lett., 9, 2331, 10.1021/nl900772q

Feng, 2010, Nano Lett., 10, 948, 10.1021/nl903886e

Wu, 2011, ACS Nano, 5, 5025, 10.1021/nn201111j

Chuangchote, 2009, ACS Appl. Mater. Interfaces, 1, 1140, 10.1021/am9001474

Yan, 2011, Chem. Commun., 47, 5632, 10.1039/c1cc10513b

Li, 2011, Chem. Mater., 23, 4344, 10.1021/cm201688v

Zhang, 2013, ACS Appl. Mater. Interfaces, 5, 10317, 10.1021/am403327g

Yu, 2014, Appl. Catal., B, 156–157, 184, 10.1016/j.apcatb.2014.03.013

Zhu, 2012, J. Am. Chem. Soc., 134, 11701, 10.1021/ja303698e

Yang, 2008, Nature, 453, 638, 10.1038/nature06964

Jiang, 2012, J. Am. Chem. Soc., 134, 4473, 10.1021/ja210484t

D'Arienzo, 2011, J. Am. Chem. Soc., 133, 17652, 10.1021/ja204838s

Tachikawa, 2011, J. Am. Chem. Soc., 133, 7197, 10.1021/ja201415j

Pan, 2011, Angew. Chem., Int. Ed., 50, 2133, 10.1002/anie.201006057

Gordon, 2012, J. Am. Chem. Soc., 134, 6751, 10.1021/ja300823a

Xu, 2013, Chem. Mater., 25, 405, 10.1021/cm303502b

Yu, 2014, J. Am. Chem. Soc., 136, 8839, 10.1021/ja5044787

Liu, 2011, Chem. Mater., 23, 4085, 10.1021/cm200597m

Xu, 2013, Chem. Commun., 49, 9803, 10.1039/c3cc46342g

Yu, 2012, Angew. Chem., Int. Ed., 51, 897, 10.1002/anie.201105786

Ida, 2012, J. Am. Chem. Soc., 134, 15773, 10.1021/ja3043678

Yang, 2013, Adv. Mater., 25, 2452, 10.1002/adma.201204453

Schwinghammer, 2014, J. Am. Chem. Soc., 136, 1730, 10.1021/ja411321s

Nicolosi, 2013, Science, 340, 1226419, 10.1126/science.1226419

Zhao, 2014, ACS Nano, 8, 10909, 10.1021/nn504755x

Antonelli, 1995, Angew. Chem., Int. Ed., 34, 2014, 10.1002/anie.199520141

Yu, 2002, Chem. Mater., 14, 4647, 10.1021/cm0203924

Yu, 2003, Chem. Mater., 15, 2280, 10.1021/cm0340781

Chen, 2007, Chem. Rev., 107, 2891, 10.1021/cr0500535

Reyes-Gil, 2013, J. Phys. Chem. C, 117, 14947, 10.1021/jp4025624

Noda, 2008, Chem. Mater., 20, 5361, 10.1021/cm703202n

Chen, 2009, Chem. Mater., 21, 4093, 10.1021/cm902130z

Hartmann, 2010, ACS Nano, 4, 3147, 10.1021/nn1004765

Li, 2009, J. Phys. Chem. C, 114, 890, 10.1021/jp909478q

Zheng, 2009, Inorg. Chem., 48, 4003, 10.1021/ic802399f

Zhang, 2012, ACS Appl. Mater. Interfaces, 5, 1031, 10.1021/am302726y

Li, 2014, Chem.–Asian J., 9, 1766, 10.1002/asia.201402128

Zhou, 2014, Chem. Commun., 50, 1070, 10.1039/C3CC47790H

Coridan, 2014, Nano Lett., 14, 2310, 10.1021/nl404623t

Kargar, 2013, Nano Lett., 13, 3017, 10.1021/nl304539x

Shi, 2011, Nano Lett., 11, 3413, 10.1021/nl201823u

Liu, 2013, Nano Lett., 13, 2989, 10.1021/nl401615t

Hwang, 2012, Nano Lett., 12, 1678, 10.1021/nl3001138

Li, 2007, J. Am. Chem. Soc., 129, 8406, 10.1021/ja072191c

Liu, 2010, J. Am. Chem. Soc., 132, 11914, 10.1021/ja105283s

Zhang, 2014, Adv. Energy Mater., 4, 1301725, 10.1002/aenm.201301725

Liu, 2010, Energy Environ. Sci., 3, 1503, 10.1039/c0ee00116c

Chen, 2011, ACS Nano, 5, 4310, 10.1021/nn200100v

Magnuson, 2009, Acc. Chem. Res., 42, 1899, 10.1021/ar900127h

Sanchez, 2005, Nat. Mater., 4, 277, 10.1038/nmat1339

Simmons, 2014, Coord. Chem. Rev., 270, 127, 10.1016/j.ccr.2013.12.018

Wen, 2013, Acc. Chem. Res., 46, 2355, 10.1021/ar300224u

Lubitz, 2014, Chem. Rev., 114, 4081, 10.1021/cr4005814

Hambourger, 2008, J. Am. Chem. Soc., 130, 2015, 10.1021/ja077691k

Reisner, 2009, J. Am. Chem. Soc., 131, 18457, 10.1021/ja907923r

Brown, 2010, J. Am. Chem. Soc., 132, 9672, 10.1021/ja101031r

Brown, 2012, J. Am. Chem. Soc., 134, 5627, 10.1021/ja2116348

Fourmond, 2014, Nat. Chem., 6, 336, 10.1038/nchem.1892

Sakai, 2013, Angew. Chem., Int. Ed., 52, 12313, 10.1002/anie.201306214

Parkin, 2008, J. Am. Chem. Soc., 130, 13410, 10.1021/ja803657d

Le Goff, 2009, Science, 326, 1384, 10.1126/science.1179773

Wang, 2011, Angew. Chem., Int. Ed., 50, 3193, 10.1002/anie.201006352

Li, 2012, Energy Environ. Sci., 5, 8220, 10.1039/c2ee22109h

Quentel, 2012, Energy Environ. Sci., 5, 7757, 10.1039/c2ee21531d

Jian, 2013, Nat. Commun., 4, 2695, 10.1038/ncomms3695

Wang, 2013, Angew. Chem., Int. Ed., 52, 8134, 10.1002/anie.201303110

Fihri, 2008, Angew. Chem., Int. Ed., 47, 564, 10.1002/anie.200702953

Artero, 2011, Angew. Chem., Int. Ed., 50, 7238, 10.1002/anie.201007987

Andreiadis, 2013, Nat. Chem., 5, 48, 10.1038/nchem.1481

Cao, 2014, Appl. Surf. Sci., 319, 344, 10.1016/j.apsusc.2014.04.094

Das, 2013, Proc. Natl. Acad. Sci. U. S. A., 110, 16716, 10.1073/pnas.1316755110

Gross, 2013, J. Am. Chem. Soc., 136, 356, 10.1021/ja410592d

Helm, 2011, Science, 333, 863, 10.1126/science.1205864

Pool, 2012, Proc. Natl. Acad. Sci. U. S. A., 109, 15634, 10.1073/pnas.1120208109

Wen, 2012, ChemSusChem, 5, 849, 10.1002/cssc.201200190

Li, 2013, Energy Environ. Sci., 6, 2597, 10.1039/c3ee40992a

Wen, 2011, J. Catal., 281, 318, 10.1016/j.jcat.2011.05.015

Huang, 2012, J. Am. Chem. Soc., 134, 16472, 10.1021/ja3062584

Cao, 2013, Phys. Chem. Chem. Phys., 15, 18363, 10.1039/c3cp53350f

Wang, 2014, ChemSusChem, 7, 1468, 10.1002/cssc.201400028

Finn, 2012, Chem. Commun., 48, 1392, 10.1039/C1CC15393E

Sayama, 2002, J. Photochem. Photobiol., A, 148, 71, 10.1016/S1010-6030(02)00070-9

Abe, 2001, Chem. Phys. Lett., 344, 339, 10.1016/S0009-2614(01)00790-4

Maeda, 2013, ACS Catal., 3, 1486, 10.1021/cs4002089

Maeda, 2010, J. Am. Chem. Soc., 132, 5858, 10.1021/ja1009025

Kudo, 2011, MRS Bull., 36, 32, 10.1557/mrs.2010.3

Kato, 2004, Chem. Lett., 33, 1348, 10.1246/cl.2004.1348

Higashi, 2008, Chem. Phys. Lett., 452, 120, 10.1016/j.cplett.2007.12.021

Maeda, 2008, Bull. Chem. Soc. Jpn., 81, 927, 10.1246/bcsj.81.927

Sasaki, 2008, J. Catal., 259, 133, 10.1016/j.jcat.2008.07.017

Tabata, 2010, Langmuir, 26, 9161, 10.1021/la100722w

Maeda, 2011, J. Phys. Chem. C, 115, 3057, 10.1021/jp110025x

Maeda, 2013, ACS Catal., 3, 1026, 10.1021/cs400156m

Sasaki, 2013, J. Am. Chem. Soc., 135, 5441, 10.1021/ja400238r

Martin, 2014, J. Am. Chem. Soc., 136, 12568, 10.1021/ja506386e

Tada, 2006, Nat. Mater., 5, 782, 10.1038/nmat1734

Ding, 2013, Int. J. Hydrogen Energy, 38, 8244, 10.1016/j.ijhydene.2013.04.093

Fu, 2011, J. Phys. Chem. C, 115, 8586, 10.1021/jp109718v

Yun, 2011, ACS Nano, 5, 4084, 10.1021/nn2006738

Wang, 2012, Adv. Energy Mater., 2, 42, 10.1002/aenm.201100528

Yu, 2013, J. Mater. Chem. A, 1, 2773, 10.1039/c3ta01476b

Wang, 2014, Chem. Commun., 50, 3460, 10.1039/c4cc00044g

Kim, 2006, Appl. Phys. Lett., 89, 064103, 10.1063/1.2266237

Iwase, 2011, J. Am. Chem. Soc., 133, 11054, 10.1021/ja203296z

Ma, 2013, Int. J. Hydrogen Energy, 38, 3582, 10.1016/j.ijhydene.2012.12.142

Wang, 2009, Chem. Commun., 45, 3452, 10.1039/b904668b

Katsumata, 2014, RSC Adv., 4, 21405, 10.1039/C4RA02511C

Sasaki, 2009, J. Phys. Chem. C, 113, 17536, 10.1021/jp907128k

Jia, 2014, Chem. Sci., 5, 1513, 10.1039/c3sc52810c

Ma, 2013, Chem.–Eur. J., 19, 7480, 10.1002/chem.201300579

Wang, 2014, Chem. Mater., 26, 4144, 10.1021/cm5011983

Dhanasekaran, 2012, J. Phys. Chem. C, 116, 12156, 10.1021/jp303255f

Peng, 2014, J. Mater. Chem. A, 2, 6296, 10.1039/C4TA00468J

Zhang, 2014, ACS Catal., 4, 3724, 10.1021/cs500794j

Xu, 2014, Int. J. Hydrogen Energy, 39, 15394, 10.1016/j.ijhydene.2014.07.166

Zhang, 2006, J. Phys. Chem. B, 110, 2668, 10.1021/jp056367d

Cho, 2011, Nano Lett., 11, 4978, 10.1021/nl2029392

Coridan, 2013, J. Phys. Chem. C, 117, 6949, 10.1021/jp311947x

Hu, 2013, Energy Environ. Sci., 6, 2984, 10.1039/c3ee40453f

Shaner, 2014, Energy Environ. Sci., 7, 779, 10.1039/C3EE43048K

Zhou, 2014, Adv. Mater., 26, 4920, 10.1002/adma.201400288

Nuraje, 2012, Adv. Mater., 24, 2885, 10.1002/adma.201200114

Li, 2014, Adv. Mater., 26, 2262, 10.1002/adma.201303369

Liu, 2011, Phys. Chem. Chem. Phys., 13, 10872, 10.1039/c1cp20787c

Nam, 2010, Nat. Nanotechnol., 5, 340, 10.1038/nnano.2010.57

Kraeutler, 1978, J. Am. Chem. Soc., 100, 4317, 10.1021/ja00481a059

Maeda, 2010, J. Phys. Chem. Lett., 1, 2655, 10.1021/jz1007966

Osterloh, 2011, MRS Bull., 36, 17, 10.1557/mrs.2010.5

Yang, 2013, Acc. Chem. Res., 46, 1900, 10.1021/ar300227e

Domen, 1986, J. Catal., 102, 92, 10.1016/0021-9517(86)90143-0

Maeda, 2006, Angew. Chem., Int. Ed., 45, 7806, 10.1002/anie.200602473

Yoshida, 2009, J. Phys. Chem. C, 113, 10151, 10.1021/jp901418u

Sun, 2012, Energy Environ. Sci., 5, 7872, 10.1039/c2ee21708b

Turner, 2013, Science, 342, 811, 10.1126/science.1246766

He, 2014, J. Phys. Chem. C, 118, 4578, 10.1021/jp408153b

Rosen, 2013, J. Am. Chem. Soc., 135, 4516, 10.1021/ja400555q

Zhang, 2014, Nat. Chem., 6, 362, 10.1038/nchem.1874

Zhang, 2012, Chem. Sci., 3, 443, 10.1039/C1SC00644D

Jaramillo, 2007, Science, 317, 100, 10.1126/science.1141483

Laursen, 2012, Energy Environ. Sci., 5, 5577, 10.1039/c2ee02618j

Li, 2013, Nat. Commun., 4, 2500, 10.1038/ncomms3500

Maeda, 2010, Angew. Chem., Int. Ed., 49, 4096, 10.1002/anie.201001259

Ma, 2012, Energy Environ. Sci., 5, 8390, 10.1039/c2ee21801a

Wang, 2013, Angew. Chem., Int. Ed., 52, 11252, 10.1002/anie.201303693

Lin, 2014, Appl. Surf. Sci., 309, 188, 10.1016/j.apsusc.2014.05.008

Ohno, 2012, J. Am. Chem. Soc., 134, 8254, 10.1021/ja302479f

Maeda, 2013, Chem.–Eur. J., 19, 4986, 10.1002/chem.201300158

Hisatomi, 2014, Chem. Soc. Rev., 43, 7520, 10.1039/C3CS60378D

Smith, 2013, J. Am. Chem. Soc., 135, 11580, 10.1021/ja403102j

Seger, 2012, Angew. Chem., Int. Ed., 51, 9128, 10.1002/anie.201203585

Zhong, 2009, J. Am. Chem. Soc., 131, 6086, 10.1021/ja9016478

Steinmiller, 2009, Proc. Natl. Acad. Sci. U. S. A., 106, 20633, 10.1073/pnas.0910203106

Ge, 2013, Appl. Catal., B, 142–143, 414, 10.1016/j.apcatb.2013.05.051

Pijpers, 2011, Proc. Natl. Acad. Sci. U. S. A., 108, 10056, 10.1073/pnas.1106545108

Hinnemann, 2005, J. Am. Chem. Soc., 127, 5308, 10.1021/ja0504690

Bourgeteau, 2013, Energy Environ. Sci., 6, 2706, 10.1039/c3ee41321g

Zong, 2014, J. Catal., 310, 51, 10.1016/j.jcat.2013.04.006

Matsukawa, 2014, Nano Lett., 14, 1038, 10.1021/nl404688h

Naldoni, 2012, J. Am. Chem. Soc., 134, 7600, 10.1021/ja3012676

Zheng, 2012, Chem. Commun., 48, 5733, 10.1039/c2cc32220j

Wang, 2013, Energy Environ. Sci., 6, 3007, 10.1039/c3ee41817k

Yang, 2013, J. Am. Chem. Soc., 135, 17831, 10.1021/ja4076748

Lin, 2014, Energy Environ. Sci., 7, 967, 10.1039/c3ee42708k

Xie, 2013, J. Am. Chem. Soc., 135, 17881, 10.1021/ja408329q

Ueno, 2013, J. Photochem. Photobiol., C, 15, 31, 10.1016/j.jphotochemrev.2013.04.001

Gao, 2011, Acc. Chem. Res., 44, 251, 10.1021/ar100117w

Gomes Silva, 2010, J. Am. Chem. Soc., 133, 595, 10.1021/ja1086358

Long, 2014, J. Am. Chem. Soc., 136, 4343, 10.1021/ja5001592

Liu, 2011, Nano Lett., 11, 1111, 10.1021/nl104005n

Thomann, 2011, Nano Lett., 11, 3440, 10.1021/nl201908s

Kamat, 2002, J. Phys. Chem. B, 106, 7729, 10.1021/jp0209289

Ingram, 2011, J. Am. Chem. Soc., 133, 5202, 10.1021/ja200086g

Pu, 2013, Nano Lett., 13, 3817, 10.1021/nl4018385

Seh, 2012, Adv. Mater., 24, 2310, 10.1002/adma.201104241

Pradhan, 2009, ACS Appl. Mater. Interfaces, 1, 2060, 10.1021/am900425v

Zhang, 2013, Nano Lett., 13, 14, 10.1021/nl3029202

Zhang, 2014, Energy Environ. Sci., 7, 1409, 10.1039/c3ee43278e

Zheng, 2014, J. Am. Chem. Soc., 136, 6870, 10.1021/ja502704n

Mubeen, 2013, Nat. Nanotechnol., 8, 247, 10.1038/nnano.2013.18

Gao, 2014, J. Am. Chem. Soc., 136, 7474, 10.1021/ja502890c

Low, 2014, Phys. Chem. Chem. Phys., 16, 1111, 10.1039/C3CP53820F

Zhang, 2011, Angew. Chem., Int. Ed., 50, 7088, 10.1002/anie.201101969

Chan, 2007, Nano Lett., 7, 1947, 10.1021/nl070648a

Zhao, 2012, Energy Environ. Sci., 5, 5564, 10.1039/C1EE02734D

Spray, 2011, J. Phys. Chem. C, 115, 3497, 10.1021/jp1093433

Barroso, 2012, Proc. Natl. Acad. Sci. U. S. A., 109, 15640, 10.1073/pnas.1118326109

Le Formal, 2011, Chem. Sci., 2, 737, 10.1039/C0SC00578A

Hisatomi, 2011, Energy Environ. Sci., 4, 2512, 10.1039/c1ee01194d

Zhong, 2011, Energy Environ. Sci., 4, 1759, 10.1039/c1ee01034d

Barroso, 2011, J. Am. Chem. Soc., 133, 14868, 10.1021/ja205325v

Lichterman, 2013, J. Phys. Chem. Lett., 4, 4188, 10.1021/jz4022415

Wang, 2011, Angew. Chem., Int. Ed., 50, 9861, 10.1002/anie.201104102

Strandwitz, 2013, J. Phys. Chem. C, 117, 4931, 10.1021/jp311207x

Sim, 2013, Energy Environ. Sci., 6, 3658, 10.1039/c3ee42106f

Nielander, 2013, J. Am. Chem. Soc., 135, 17246, 10.1021/ja407462g

Thibert, 2011, J. Phys. Chem. Lett., 2, 2688, 10.1021/jz2013193

Huang, 2013, J. Phys. Chem. C, 117, 11584, 10.1021/jp400010z

O'regan, 1991, Nature, 353, 737, 10.1038/353737a0

Yella, 2011, Science, 334, 629, 10.1126/science.1209688

Zhao, 2012, Proc. Natl. Acad. Sci. U. S. A., 109, 15612, 10.1073/pnas.1118339109

Lakadamyali, 2011, Chem. Commun., 47, 1695, 10.1039/c0cc04658b

Tong, 2012, Energy Environ. Sci., 5, 9472, 10.1039/c2ee22866a

Zhang, 2013, ACS Catal., 4, 162, 10.1021/cs400863c

Matt, 2013, Energy Environ. Sci., 6, 1504, 10.1039/c3ee40352a

Ji, 2013, J. Am. Chem. Soc., 135, 11696, 10.1021/ja404525e

Khnayzer, 2013, J. Am. Chem. Soc., 135, 14068, 10.1021/ja407816f

Luo, 2013, Angew. Chem., Int. Ed., 52, 419, 10.1002/anie.201205915

Sun, 2008, J. Am. Chem. Soc., 130, 1124, 10.1021/ja0777741

Chen, 2010, Angew. Chem., Int. Ed., 49, 5966, 10.1002/anie.201001827

Hensel, 2010, Nano Lett., 10, 478, 10.1021/nl903217w

Li, 2010, J. Mater. Chem., 20, 3656, 10.1039/b927279h

Lee, 2009, Chem. Mater., 22, 922, 10.1021/cm901762h

Wang, 2010, Nano Lett., 10, 1088, 10.1021/nl100250z

Seol, 2013, Chem. Mater., 25, 184, 10.1021/cm303206s

Peng, 2013, Chem. Commun., 49, 3221, 10.1039/c3cc41362d

Gimbert-Suriñach, 2014, J. Am. Chem. Soc., 136, 7655, 10.1021/ja501489h

Kang, 2007, J. Am. Chem. Soc., 129, 12090, 10.1021/ja075184x

Wang, 2014, Chem. Commun., 50, 10148, 10.1039/C4CC02543A

Li, 2010, Angew. Chem., Int. Ed., 49, 4430, 10.1002/anie.200906154

Zhang, 2013, Nanoscale, 5, 2274, 10.1039/c3nr34142a

Yeh, 2014, Adv. Mater., 26, 3297, 10.1002/adma.201305299

Zhang, 2008, Angew. Chem., Int. Ed., 47, 1766, 10.1002/anie.200704788

Ma, 2012, Energy Environ. Sci., 5, 6345, 10.1039/C1EE02053F

Yu, 2011, Energy Environ. Sci., 4, 3652, 10.1039/c1ee01271a

Liu, 2011, Energy Environ. Sci., 4, 1372, 10.1039/c0ee00604a

Li, 2014, Nanoscale, 6, 24, 10.1039/C3NR03998F

Jang, 2007, Int. J. Hydrogen Energy, 32, 4786, 10.1016/j.ijhydene.2007.06.026

Jang, 2007, J. Photochem. Photobiol., A, 188, 112, 10.1016/j.jphotochem.2006.11.027

Serpone, 1984, J. Chem. Soc., Chem. Commun., 20, 342, 10.1039/C39840000342

Jang, 2008, J. Phys. Chem. C, 112, 17200, 10.1021/jp804699c

Park, 2008, J. Mater. Chem., 18, 2379, 10.1039/b718759a

Park, 2011, J. Phys. Chem. C, 115, 6141, 10.1021/jp2015319

Li, 2014, J. Am. Chem. Soc., 136, 8438, 10.1021/ja503508g

Qi, 2011, Phys. Chem. Chem. Phys., 13, 8915, 10.1039/c1cp20079h

Sui, 2013, Nanoscale, 5, 9150, 10.1039/c3nr02413j

Hong, 2011, Energy Environ. Sci., 4, 1781, 10.1039/c0ee00743a

Su, 2011, Nano Lett., 11, 1928, 10.1021/nl2000743

Hou, 2012, Nano Lett., 12, 6464, 10.1021/nl303961c

Hou, 2013, Angew. Chem., Int. Ed., 52, 1248, 10.1002/anie.201207578

Kim, 2005, Angew. Chem., Int. Ed., 44, 4585, 10.1002/anie.200500064

Boettcher, 2011, J. Am. Chem. Soc., 133, 1216, 10.1021/ja108801m

Low, 2014, Chem. Commun., 50, 10768, 10.1039/C4CC02553A

Liu, 2014, Appl. Surf. Sci., 315, 314, 10.1016/j.apsusc.2014.07.143

Serpone, 2012, J. Phys. Chem. Lett., 3, 673, 10.1021/jz300071j

Sato, 1980, Chem. Phys. Lett., 72, 83, 10.1016/0009-2614(80)80246-6

Berr, 2010, Appl. Phys. Lett., 97, 093108, 10.1063/1.3480613

Berr, 2012, Nano Lett., 12, 5903, 10.1021/nl3033069

Schweinberger, 2013, J. Am. Chem. Soc., 135, 13262, 10.1021/ja406070q

Lin, 2014, Nat. Mater., 13, 81, 10.1038/nmat3811

An, 2007, carbon, 45, 1795, 10.1016/j.carbon.2007.04.034

Woan, 2009, Adv. Mater., 21, 2233, 10.1002/adma.200802738

Xia, 2007, carbon, 45, 717, 10.1016/j.carbon.2006.11.028

Yao, 2008, Environ. Sci. Technol., 42, 4952, 10.1021/es800191n

Kongkanand, 2007, Nano Lett., 7, 676, 10.1021/nl0627238

Kim, 2011, Energy Environ. Sci., 4, 685, 10.1039/C0EE00330A

Yu, 2012, Nanoscale, 4, 2670, 10.1039/c2nr30129f

Xiang, 2012, Chem. Soc. Rev., 41, 782, 10.1039/C1CS15172J

Xiang, 2013, J. Phys. Chem. Lett., 4, 753, 10.1021/jz302048d

Yeh, 2010, Adv. Funct. Mater., 20, 2255, 10.1002/adfm.201000274

Lightcap, 2010, Nano Lett., 10, 577, 10.1021/nl9035109

Williams, 2008, ACS Nano, 2, 1487, 10.1021/nn800251f

Gong, 2009, Science, 323, 760, 10.1126/science.1168049

Zhao, 2013, Nat. Commun., 4, 2390, 10.1038/ncomms3390

Zhao, 2013, J. Am. Chem. Soc., 135, 1201, 10.1021/ja310566z

Zheng, 2014, Nat. Commun., 5, 3783, 10.1038/ncomms4783

Jia, 2011, J. Phys. Chem. C, 115, 11466, 10.1021/jp2023617

Paraknowitsch, 2013, Energy Environ. Sci., 6, 2839, 10.1039/c3ee41444b

Li, 2012, Nat. Nanotechnol., 7, 394, 10.1038/nnano.2012.72

Kamat, 2012, J. Phys. Chem. Lett., 3, 663, 10.1021/jz201629p

Zhang, 2012, J. Photochem. Photobiol., C, 13, 263, 10.1016/j.jphotochemrev.2012.07.002

Zhang, 2014, Energy Environ. Sci., 7, 954, 10.1039/c3ee43147a

McKone, 2013, Chem. Mater., 26, 407, 10.1021/cm4021518