Engineering covalent organic frameworks in the modulation of photocatalytic degradation of pollutants under visible light conditions

Materials Today Chemistry - Tập 22 - Trang 100548 - 2021
A. Jiménez-Almarza1, A. López-Magano1, R. Cano1, B. Ortín-Rubio2, D. Díaz-García3, S. Gomez-Ruiz3, I. Imaz2, D. Maspoch2,4, R. Mas-Ballesté1,5, J. Alemán5,6
1Department of Inorganic Chemistry (Module 7), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
2Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Barcelona, 08193, Spain
3COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, E.S.C.E.T., Universidad Rey Juan Carlos, Calle Tulipán s/n, Móstoles, Madrid, E-28933, Spain
4Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, Barcelona, 08010, Spain
5Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
6Department of Organic Chemistry (Module 1), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain

Tài liệu tham khảo

Venkata Laxma Reddy, 2011, A review of photocatalytic treatment for various air pollutants, Asian J. Atmos. Environ., 5, 181, 10.5572/ajae.2011.5.3.181 Turro, 1977, Energy transfer processes, Pure Appl. Chem., 49, 405, 10.1351/pac197749040405 Stephenson, 2018 Twilton, 2017, The merger of transition metal and photocatalysis, Nat. Rev. Chem., 1, 52, 10.1038/s41570-017-0052 Romero, 2016, Organic photoredox catalysis, Chem. Rev., 116, 10075, 10.1021/acs.chemrev.6b00057 Amos, 2020, Photocatalysis with organic dyes: facile access to reactive intermediates for synthesis, Beilstein J. Org. Chem., 16, 1163, 10.3762/bjoc.16.103 Ameta, 2013, Photocatalytic degradation of organic pollutants: a review, Mater. Sci. Forum, 734, 247, 10.4028/www.scientific.net/MSF.734.247 Hoffmann, 2008, Photochemical reactions as key steps in organic synthesis, Chem. Rev., 108, 1052, 10.1021/cr0680336 Gisbertz, 2020, Heterogeneous photocatalysis in organic synthesis, ChemPhotoChem, 4, 456, 10.1002/cptc.202000014 Xiao, 2019, Metal–organic frameworks for photocatalysis and photothermal catalysis, Acc. Chem. Res., 52, 356, 10.1021/acs.accounts.8b00521 Wang, 2020, Covalent organic frameworks: emerging high-performance platforms for efficient photocatalytic applications, J. Mater. Chem. A., 8, 6957, 10.1039/D0TA00556H Wang, 2019, Covalent organic frameworks (COFs) for environmental applications, Coord. Chem. Rev., 400, 213046, 10.1016/j.ccr.2019.213046 López-Magano, 2020, Metal–organic frameworks (MOFs) and covalent organic frameworks (COFs) applied to photocatalytic organic transformations, Catalysts, 10, 720, 10.3390/catal10070720 Côté, 2005, Porous, crystalline, covalent organic frameworks, Science (80-. ), 310 Sharma, 2020, Recent development of covalent organic frameworks (COFs): synthesis and catalytic (organic-electro-photo) applications, Mater. Horiz., 7, 411, 10.1039/C9MH00856J Zhu, 2017, Crystallization of covalent organic frameworks for gas storage applications, Molecules, 22, 10.3390/molecules22071149 Mandal, 2017, Two-dimensional covalent organic frameworks for optoelectronics and energy storage, ChemNanoMat, 3, 373, 10.1002/cnma.201700048 Fang, 2015, 3D porous crystalline polyimide covalent organic frameworks for drug delivery, J. Am. Chem. Soc., 137, 8352, 10.1021/jacs.5b04147 Ma, 2016, Cationic covalent organic frameworks: a simple platform of anionic exchange for porosity tuning and proton conduction, J. Am. Chem. Soc., 138, 5897, 10.1021/jacs.5b13490 Ding, 2011, Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in suzuki–miyaura coupling reaction, J. Am. Chem. Soc., 133, 19816, 10.1021/ja206846p Luis-Barrerra, 2019, Switching acidic and basic catalysis through supramolecular functionalization in a porous 3D covalent imine-based material, Catal. Sci. Technol., 9, 6007, 10.1039/C9CY01527B Wang, 2018, Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water, Nat. Chem., 10, 1180, 10.1038/s41557-018-0141-5 Chen, 2020, Synthesis of bipyridine-based covalent organic frameworks for visible-light-driven photocatalytic water oxidation, Appl. Catal. B Environ., 262, 118271, 10.1016/j.apcatb.2019.118271 Guo, 2019, Stable covalent organic frameworks for photochemical applications, ChemPhotoChem, 3, 973, 10.1002/cptc.201900089 Kang, 2020, Rational synthesis of interpenetrated 3D covalent organic frameworks for asymmetric photocatalysis, Chem. Sci., 11, 1494, 10.1039/C9SC04882K Yuan, 2020, Sunlight-Driven synthesis of 1,2,4-thiadiazoles via oxidative construction of a nitrogen-sulfur bond catalyzed by a reusable covalent organic framework, ChemPhotoChem, 10.1002/cptc.201900263 Wang, 2020, Programming covalent organic frameworks for photocatalysis: investigation of chemical and structural variations, Matter, 2, 416, 10.1016/j.matt.2019.10.026 Xue, 2021, Visible-light degradation of azo dyes by imine-linked covalent organic frameworks, Green Energy Environ., 10.1016/j.gee.2020.09.010 Jiménez-Almarza, 2019, Imine-based covalent organic frameworks as photocatalysts for metal free oxidation processes under visible light conditions, ChemCatChem, 11, 4916, 10.1002/cctc.201901061 Ren, 2013, Low band-gap benzothiadiazole conjugated microporous polymers, Polym. Chem., 4, 5585, 10.1039/c3py00690e Kang, 2013, Tandem synthesis of photoactive benzodifuran moieties in the formation of microporous organic networks, Angew. Chem. Int. Ed., 52, 6228, 10.1002/anie.201300655 Jiang, 2013, Conjugated microporous polymers with rose bengal dye for highly efficient heterogeneous organo-photocatalysis, Macromolecules, 46, 8779, 10.1021/ma402104h Wang, 2014, A conjugated porous poly-benzobisthiadiazole network for a visible light-driven photoredox reaction, J. Mater. Chem. A., 2, 18720, 10.1039/C4TA03887H Dadashi-Silab, 2014, Microporous thioxanthone polymers as heterogeneous photoinitiators for visible light induced free radical and cationic polymerizations, Macromolecules, 47, 4607, 10.1021/ma501001m López-Magano, 2020, Incorporation of photocatalytic Pt(II) complexes into imine-based layered covalent organic frameworks (COFs) through monomer truncation strategy, Appl. Catal. B Environ., 272, 119027, 10.1016/j.apcatb.2020.119027 Wang, 2015, Molecular structural design of conjugated microporous poly(benzooxadiazole) networks for enhanced photocatalytic activity with visible light, Adv. Mater., 27, 6265, 10.1002/adma.201502735 Liras, 2016, Conjugated microporous polymers incorporating BODIPY moieties as light-emitting materials and recyclable visible-light photocatalysts, Macromolecules, 49, 1666, 10.1021/acs.macromol.5b02511 Ghasimi, 2017, A conjugated microporous polymer for palladium-free, visible light-promoted photocatalytic stille-type coupling reactions, Adv. Sci. (Weinheim, Baden-Wurttemberg, Ger., 4, 1700101 All POPs listed in the Stockholm Convention, (n.d.). http://www.pops.int/TheConvention/ThePOPs/AllPOPs/tabid/2509/Default.aspx (accessed August 25, 2021). Gill, 2004, Polybrominated diphenyl ethers: human tissue levels and toxicology, Rev. Environ. Contam. Toxicol., 183, 55 Souza, 2016, Evaluation of polybrominated diphenyl ether toxicity on HepG2 cells – hexabrominated congener (BDE-154) is less toxic than tetrabrominated congener (BDE-47), Basic Clin. Pharmacol. Toxicol., 119, 485, 10.1111/bcpt.12598 Raff, 2006, Gas-phase reactions of brominated diphenyl ethers with OH radicals, J. Phys. Chem. A., 110, 10783, 10.1021/jp0630222 Padhi, 2012, Pollution due to synthetic dyes toxicity & carcinogenicity studies and remediation, Int. J. Environ. Sci., 3, 940 Ventura-Camargo, 2015, Azo dyes: characterization and toxicity– A review, Text. Light Ind. Sci. Technol., 2, 85 Hou, 2007, The effect of substituent groups on the reductive degradation of azo dyes by zerovalent iron, J. Hazard Mater., 145, 305, 10.1016/j.jhazmat.2006.11.019 Pan, 2012, Evaluation of impact of exposure of Sudan azo dyes and their metabolites on human intestinal bacteria, Anaerobe, 18, 445, 10.1016/j.anaerobe.2012.05.002 Ma, 2015, Adsorption of methylene blue and Orange II pollutants on activated carbon prepared from banana peel, J. Porous Mater., 22, 301, 10.1007/s10934-014-9896-2 Albayati, 2016, Separation of methylene blue as pollutant of water by SBA-15 in a fixed-bed column, Arab. J. Sci. Eng., 41, 2409, 10.1007/s13369-015-1867-7 Lan, 2020, Facile fabrication of triphenylamine-based conjugated porous polymers and their application in organic degradation under visible light, New J. Chem., 44, 2986, 10.1039/C9NJ05500B Kong, 2003, Phenothiazine-based conjugated Polymers: synthesis, electrochemistry, and light-emitting properties, Macromolecules, 36, 8992, 10.1021/ma035087y Garrido-Castro, 2019, Intramolecular homolytic substitution enabled by photoredox catalysis: sulfur, phosphorus, and silicon heterocycle synthesis from aryl halides, Org. Lett., 21, 5295, 10.1021/acs.orglett.9b01911 Discekici, 2015, A highly reducing metal-free photoredox catalyst: design and application in radical dehalogenations, Chem. Commun., 51, 11705, 10.1039/C5CC04677G Ma, 2019, Visible light mediated external oxidant free selective C5 bromination of 8-aminoquinoline amides under ambient conditions, Asian J. Org. Chem., 8, 1136, 10.1002/ajoc.201900293 Park, 2012, Photocatalysis by phenothiazine dyes: visible-light-driven oxidative coupling of primary amines at ambient temperature, Org. Lett., 14, 5502, 10.1021/ol302584y Dadashi-Silab, 2017, Phenyl benzo[b]phenothiazine as a visible light photoredox catalyst for metal-free atom transfer radical polymerization, Chem. A Eur. J., 23, 5972, 10.1002/chem.201605574 Zhai, 2017, A backbone design principle for covalent organic frameworks: the impact of weakly interacting units on CO2 adsorption, Chem. Commun., 53, 4242, 10.1039/C7CC01921A Zhu, 2020, Enhancement of crystallinity of imine-linked covalent organic frameworks via aldehyde modulators, Polym. Chem., 11, 4464, 10.1039/D0PY00776E Lukose, 2011, The structure of layered covalent-organic frameworks, Chem. A Eur. J., 17, 2388, 10.1002/chem.201001290 Feng, 2019, Highly efficient photocatalytic degradation performance of CsPb(Br1–xClx)3-Au nanoheterostructures, ACS Sustain. Chem. Eng., 7, 5152, 10.1021/acssuschemeng.8b06023 Aarthi, 2007, Photocatalytic degradation of Azure and Sudan dyes using nano TiO2, J. Hazard Mater., 149, 725, 10.1016/j.jhazmat.2007.04.038 Senapati, 2011, Photocatalytic degradation of methylene blue in water using CoFe2O4–Cr2O3–SiO2 fluorescent magnetic nanocomposite, J. Mol. Catal. A Chem., 346, 111, 10.1016/j.molcata.2011.07.001 González-Muñoz, 2019, Size-selective mesoporous silica-based Pt(II) complex as efficient and reusable photocatalytic material, J. Catal., 373, 374, 10.1016/j.jcat.2019.04.015 Ogilby, 2010, Singlet oxygen: there is indeed something new under the sun, Chem. Soc. Rev., 39, 3181, 10.1039/b926014p Hayyan, 2016, Superoxide ion: generation and chemical implications, Chem. Rev., 116, 3029, 10.1021/acs.chemrev.5b00407 Samoilova, 2011, Reaction of superoxide radical with quinone molecules, J. Phys. Chem. A., 115, 11589, 10.1021/jp204891n Ouannes, 1968, Quenching of singlet oxygen by tertiary aliphatic amines. Effect of DABCO (1,4-diazabicyclo[2.2.2]octane), J. Am. Chem. Soc., 90, 6527, 10.1021/ja01025a059 Xu, 2020, Remarkably catalytic activity in reduction of 4-nitrophenol and methylene blue by Fe3O4@COF supported noble metal nanoparticles, Appl. Catal. B Environ., 260, 118142, 10.1016/j.apcatb.2019.118142 Gak, 1998, Triplet-excited dye molecules (eosine and methylene blue) quenching by H2O2 in aqueous solutions, J. Photochem. Photobiol. A Chem., 116, 57, 10.1016/S1010-6030(98)00230-5 Brasseur, 2005