Engineering color, pattern, and texture: From nature to materials

Matter - Tập 4 - Trang 2163-2171 - 2021
Daniel J. Wilson1, Zhuangsheng Lin1, Duncan Q. Bower1, Leila F. Deravi1
1Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA

Tài liệu tham khảo

Stolovitch, 2011, Chapter 3. The human learner, 19 Darwin, 1859 Rayleigh, 1919, VII. On the optical character of some brilliant animal colours, Lond. Edinb. Dublin Philos. Mag. J. Sci., 37, 98, 10.1080/14786440108635867 Hooke, 1987 Hanlon, 2007, Cephalopod dynamic camouflage, Curr. Biol., 17, R400, 10.1016/j.cub.2007.03.034 Hanlon, 2010, A "mimic octopus" in the Atlantic: flatfish mimicry and camouflage by Macrotritopus defilippi, Biol. Bull., 218, 15, 10.1086/BBLv218n1p15 Eacock, 2019, Adaptive colour change and background choice behaviour in peppered moth caterpillars is mediated by extraocular photoreception, Commun. Biol., 2, 286, 10.1038/s42003-019-0502-7 Suzuki, 2019, Multicomponent structures in camouflage and mimicry in butterfly wing patterns, J. Morphol., 280, 149, 10.1002/jmor.20927 Roper, 1988, Behavior and systematics of cephalopods from Lizard Island, Australia, based on color and body patterns, Malacologia, 29, 153 Mathger, 2012, How does the blue-ringed octopus (Hapalochlaena lunulata) flash its blue rings?, J. Exp. Biol., 215, 3752, 10.1242/jeb.076869 Futahashi, 2012, Redox alters yellow dragonflies into red, Proc. Natl. Acad. Sci. U. S. A., 109, 12626, 10.1073/pnas.1207114109 Williams, 2019, Dynamic pigmentary and structural coloration within cephalopod chromatophore organs, Nat. Commun., 10, 1004, 10.1038/s41467-019-08891-x Allen, 2014, Comparative morphology of changeable skin papillae in octopus and cuttlefish, J. Morphol., 275, 371, 10.1002/jmor.20221 Gratwicke Zerpe Duarte, 2017, Camouflage through colour change: mechanisms, adaptive value and ecological significance, Philos. Trans. R. Soc. B, 372, 20160342, 10.1098/rstb.2016.0342 Burton, 2002, The physiology of flatfish chromatophores, Microsc. Res. Tech., 58, 481, 10.1002/jemt.10166 Teyssier, 2015, Photonic crystals cause active colour change in chameleons, Nat. Commun., 6, 6368, 10.1038/ncomms7368 Levenson, 2019, Calibration between trigger and color: neutralization of a genetically encoded coulombic switch and dynamic arrest precisely tune reflectin assembly, J. Biol. Chem., 294, 16804, 10.1074/jbc.RA119.010339 Temple, 2012, High-resolution polarisation vision in a cuttlefish, Curr. Biol., 22, R121, 10.1016/j.cub.2012.01.010 Kingston, 2016, Diverse distributions of extraocular Opsins in Crustaceans, cephalopods, and fish, Integr. Comp. Biol., 56, 820, 10.1093/icb/icw022 Giska, 2019, Introgression drives repeated evolution of winter coat color polymorphism in hares, Proc. Natl. Acad. Sci. U. S. A., 116, 24150, 10.1073/pnas.1910471116 Jones, 2018, Adaptive introgression underlies polymorphic seasonal camouflage in snowshoe hares, Science, 360, 1355, 10.1126/science.aar5273 Skelhorn, 2011, Mimicking multiple models: polyphenetic masqueraders gain additional benefits from crypsis, Behav. Ecol., 22, 60, 10.1093/beheco/arq166 Stevens, 2013, Colour change and camouflage in the horned ghost crab Ocypode ceratophthalmus, Biol. J. Linn. Soc., 109, 257, 10.1111/bij.12039 Stevens, 2014, Color change and camouflage in juvenile shore crabs Carcinus maenas, Front. Ecol. Evol., 2, 14, 10.3389/fevo.2014.00014 Zimova, 2018, Function and underlying mechanisms of seasonal colour moulting in mammals and birds: what keeps them changing in a warming world?, Biol. Rev., 93, 1478, 10.1111/brv.12405 Horton, 1996, Regulation of light harvesting in green plants, Annu. Rev. Plant Physiol. Plant Mol. Biol., 47, 655, 10.1146/annurev.arplant.47.1.655 Oxford, 1998, Evolution and ecology of spider coloration, Annu. Rev. Entomol., 43, 619, 10.1146/annurev.ento.43.1.619 Rodionov, 1994, Microtubule dynamics in fish melanophores, J. Cell Biol., 126, 1455, 10.1083/jcb.126.6.1455 Hanlon, 2009, Cephalopod dynamic camouflage: bridging the continuum between background matching and disruptive coloration, Philos. Trans. R. Soc. B, 364, 429, 10.1098/rstb.2008.0270 Kodric-Brown, 1998, Sexual dichromatism and temporary color changes in the reproduction of fishes, Am. Zool., 38, 70, 10.1093/icb/38.1.70 Yasutomi, 1998, Formation of the dermal chromatophore unit (DCU) in the tree frog Hyla arborea, Pigm. Cell Res., 11, 198, 10.1111/j.1600-0749.1998.tb00730.x Nilsson Skold, 2013, Rapid color change in fish and amphibians—function, regulation, and emerging applications, Pigm. Cell Melanoma Res., 26, 29, 10.1111/pcmr.12040 Magurran, 1991, Variation in schooling and aggression amongst guppy (Poecilia reticulata) populations in Trinidad, Behaviour, 118, 214, 10.1163/156853991X00292 Tadepalli, 2017, Bio-optics and bio-inspired optical materials, Chem. Rev., 117, 12705, 10.1021/acs.chemrev.7b00153 Marlow, 2009, Opals: status and prospects, Angew. Chem. Int. Ed., 48, 6212, 10.1002/anie.200900210 Fenzl, 2014, Photonic crystals for chemical sensing and biosensing, Angew. Chem. Int. Ed., 53, 3318, 10.1002/anie.201307828 Yoshioka, 2011, Mechanism of variable structural colour in the neon tetra: quantitative evaluation of the Venetian blind model, J. R. Soc. Interface, 8, 56, 10.1098/rsif.2010.0253 Nagaishi, 1992, Ultrastructure of the motile iridophores of the neon tetra, Zool. Sci., 9, 65 Eliason, 2010, Rapid, reversible response of iridescent feather color to ambient humidity, Opt. Express, 18, 21284, 10.1364/OE.18.021284 Morin, 2012, Camouflage and display for soft machines, Science, 337, 828, 10.1126/science.1222149 Kobayash, 2018, Microfluidic-based flexible reflective multicolor display, Microsyst. Nanoeng., 4, 17, 10.1038/s41378-018-0018-1 Andersson, 2007, Printable all-organic electrochromic active-matrix displays, Adv. Funct. Mater., 17, 3074, 10.1002/adfm.200601241 Kumar, 2018, Xanthommatin-based electrochromic displays inspired by nature, ACS Appl. Mater. Inter., 10, 43177, 10.1021/acsami.8b14123 Collier, 2018, Aqueous electrolyte compatible electrochromic polymers processed from an environmentally sustainable solvent, ACS Macro Lett., 7, 1208, 10.1021/acsmacrolett.8b00551 Wang, 2016, Mechanical chameleon through dynamic real-time plasmonic tuning, ACS Nano, 10, 1788, 10.1021/acsnano.5b07472 Singh, 2017, ITO-free solution-processed flexible electrochromic devices based on PEDOT:PSS as transparent conducting electrode, ACS Appl. Mater. Inter., 9, 19427, 10.1021/acsami.6b09476 Comiskey, 1998, An electrophoretic ink for all-printed reflective electronic displays, Nature, 394, 253, 10.1038/28349 Yu, 2014, Adaptive optoelectronic camouflage systems with designs inspired by cephalopod skins, Proc. Natl. Acad. Sci. U. S. A., 111, 12998, 10.1073/pnas.1410494111 Xiao, 2016, Stimuli-responsive structurally colored films from bioinspired synthetic melanin nanoparticles, Chem. Mater., 28, 5516, 10.1021/acs.chemmater.6b02127 Fei, 2016, Bioinspired polymeric photonic crystals for high cycling pH-sensing performance, ACS Appl. Mater. Inter., 8, 27091, 10.1021/acsami.6b08724 Yue, 2014, Mechano-actuated ultrafast full-colour switching in layered photonic hydrogels, Nat. Commun., 5, 4659, 10.1038/ncomms5659 Jurewicz, 2020, Mechanochromic and thermochromic sensors based on graphene infused polymer opals, Adv. Funct. Mater., 30, 12 Allen, 2013, Cuttlefish skin papilla morphology suggests a muscular hydrostatic function for rapid changeability, J. Morphol., 274, 645, 10.1002/jmor.20121 Kim, 2019, Reconfigurable soft body trajectories using unidirectionally stretchable composite laminae, Nat. Commun., 10, 3464, 10.1038/s41467-019-11294-7 Pikul, 2017, Stretchable surfaces with programmable 3D texture morphing for synthetic camouflaging skins, Science, 358, 210, 10.1126/science.aan5627 Han, 2021, Multimaterial printing for cephalopod-inspired light-responsive artificial chromatophores, ACS Appl. Mater. Inter., 13, 12735, 10.1021/acsami.0c17623 Siefert, 2019, Bio-inspired pneumatic shape-morphing elastomers, Nat. Mater., 18, 24, 10.1038/s41563-018-0219-x Christianson, 2018, Translucent soft robots driven by frameless fluid electrode dielectric elastomer actuators, Sci. Robot., 3, eaat1893, 10.1126/scirobotics.aat1893 Xu, 2018, Adaptive infrared-reflecting systems inspired by cephalopods, Science, 359, 1495, 10.1126/science.aar5191 Xu, 2020, Stretchable cephalopod-inspired multimodal camouflage systems, Adv. Mater., 32, 1905717, 10.1002/adma.201905717 Zhao, 2019, Bio-inspired sensing and actuating materials, J. Mater. Chem. C, 7, 6493, 10.1039/C9TC01483G Wang, 2019, Chameleon-inspired structural-color actuators, Matter, 1, 626, 10.1016/j.matt.2019.05.012 Fu, 2018, Bioinspired living structural color hydrogels, Sci. Robot., 3, eaar8580, 10.1126/scirobotics.aar8580 Wei, 2019, Bioinspired synergistic fluorescence-color-switchable polymeric hydrogel actuators, Angew. Chem. Int. Ed., 58, 16243, 10.1002/anie.201908437