Engineering color, pattern, and texture: From nature to materials
Tài liệu tham khảo
Stolovitch, 2011, Chapter 3. The human learner, 19
Darwin, 1859
Rayleigh, 1919, VII. On the optical character of some brilliant animal colours, Lond. Edinb. Dublin Philos. Mag. J. Sci., 37, 98, 10.1080/14786440108635867
Hooke, 1987
Hanlon, 2007, Cephalopod dynamic camouflage, Curr. Biol., 17, R400, 10.1016/j.cub.2007.03.034
Hanlon, 2010, A "mimic octopus" in the Atlantic: flatfish mimicry and camouflage by Macrotritopus defilippi, Biol. Bull., 218, 15, 10.1086/BBLv218n1p15
Eacock, 2019, Adaptive colour change and background choice behaviour in peppered moth caterpillars is mediated by extraocular photoreception, Commun. Biol., 2, 286, 10.1038/s42003-019-0502-7
Suzuki, 2019, Multicomponent structures in camouflage and mimicry in butterfly wing patterns, J. Morphol., 280, 149, 10.1002/jmor.20927
Roper, 1988, Behavior and systematics of cephalopods from Lizard Island, Australia, based on color and body patterns, Malacologia, 29, 153
Mathger, 2012, How does the blue-ringed octopus (Hapalochlaena lunulata) flash its blue rings?, J. Exp. Biol., 215, 3752, 10.1242/jeb.076869
Futahashi, 2012, Redox alters yellow dragonflies into red, Proc. Natl. Acad. Sci. U. S. A., 109, 12626, 10.1073/pnas.1207114109
Williams, 2019, Dynamic pigmentary and structural coloration within cephalopod chromatophore organs, Nat. Commun., 10, 1004, 10.1038/s41467-019-08891-x
Allen, 2014, Comparative morphology of changeable skin papillae in octopus and cuttlefish, J. Morphol., 275, 371, 10.1002/jmor.20221
Gratwicke
Zerpe
Duarte, 2017, Camouflage through colour change: mechanisms, adaptive value and ecological significance, Philos. Trans. R. Soc. B, 372, 20160342, 10.1098/rstb.2016.0342
Burton, 2002, The physiology of flatfish chromatophores, Microsc. Res. Tech., 58, 481, 10.1002/jemt.10166
Teyssier, 2015, Photonic crystals cause active colour change in chameleons, Nat. Commun., 6, 6368, 10.1038/ncomms7368
Levenson, 2019, Calibration between trigger and color: neutralization of a genetically encoded coulombic switch and dynamic arrest precisely tune reflectin assembly, J. Biol. Chem., 294, 16804, 10.1074/jbc.RA119.010339
Temple, 2012, High-resolution polarisation vision in a cuttlefish, Curr. Biol., 22, R121, 10.1016/j.cub.2012.01.010
Kingston, 2016, Diverse distributions of extraocular Opsins in Crustaceans, cephalopods, and fish, Integr. Comp. Biol., 56, 820, 10.1093/icb/icw022
Giska, 2019, Introgression drives repeated evolution of winter coat color polymorphism in hares, Proc. Natl. Acad. Sci. U. S. A., 116, 24150, 10.1073/pnas.1910471116
Jones, 2018, Adaptive introgression underlies polymorphic seasonal camouflage in snowshoe hares, Science, 360, 1355, 10.1126/science.aar5273
Skelhorn, 2011, Mimicking multiple models: polyphenetic masqueraders gain additional benefits from crypsis, Behav. Ecol., 22, 60, 10.1093/beheco/arq166
Stevens, 2013, Colour change and camouflage in the horned ghost crab Ocypode ceratophthalmus, Biol. J. Linn. Soc., 109, 257, 10.1111/bij.12039
Stevens, 2014, Color change and camouflage in juvenile shore crabs Carcinus maenas, Front. Ecol. Evol., 2, 14, 10.3389/fevo.2014.00014
Zimova, 2018, Function and underlying mechanisms of seasonal colour moulting in mammals and birds: what keeps them changing in a warming world?, Biol. Rev., 93, 1478, 10.1111/brv.12405
Horton, 1996, Regulation of light harvesting in green plants, Annu. Rev. Plant Physiol. Plant Mol. Biol., 47, 655, 10.1146/annurev.arplant.47.1.655
Oxford, 1998, Evolution and ecology of spider coloration, Annu. Rev. Entomol., 43, 619, 10.1146/annurev.ento.43.1.619
Rodionov, 1994, Microtubule dynamics in fish melanophores, J. Cell Biol., 126, 1455, 10.1083/jcb.126.6.1455
Hanlon, 2009, Cephalopod dynamic camouflage: bridging the continuum between background matching and disruptive coloration, Philos. Trans. R. Soc. B, 364, 429, 10.1098/rstb.2008.0270
Kodric-Brown, 1998, Sexual dichromatism and temporary color changes in the reproduction of fishes, Am. Zool., 38, 70, 10.1093/icb/38.1.70
Yasutomi, 1998, Formation of the dermal chromatophore unit (DCU) in the tree frog Hyla arborea, Pigm. Cell Res., 11, 198, 10.1111/j.1600-0749.1998.tb00730.x
Nilsson Skold, 2013, Rapid color change in fish and amphibians—function, regulation, and emerging applications, Pigm. Cell Melanoma Res., 26, 29, 10.1111/pcmr.12040
Magurran, 1991, Variation in schooling and aggression amongst guppy (Poecilia reticulata) populations in Trinidad, Behaviour, 118, 214, 10.1163/156853991X00292
Tadepalli, 2017, Bio-optics and bio-inspired optical materials, Chem. Rev., 117, 12705, 10.1021/acs.chemrev.7b00153
Marlow, 2009, Opals: status and prospects, Angew. Chem. Int. Ed., 48, 6212, 10.1002/anie.200900210
Fenzl, 2014, Photonic crystals for chemical sensing and biosensing, Angew. Chem. Int. Ed., 53, 3318, 10.1002/anie.201307828
Yoshioka, 2011, Mechanism of variable structural colour in the neon tetra: quantitative evaluation of the Venetian blind model, J. R. Soc. Interface, 8, 56, 10.1098/rsif.2010.0253
Nagaishi, 1992, Ultrastructure of the motile iridophores of the neon tetra, Zool. Sci., 9, 65
Eliason, 2010, Rapid, reversible response of iridescent feather color to ambient humidity, Opt. Express, 18, 21284, 10.1364/OE.18.021284
Morin, 2012, Camouflage and display for soft machines, Science, 337, 828, 10.1126/science.1222149
Kobayash, 2018, Microfluidic-based flexible reflective multicolor display, Microsyst. Nanoeng., 4, 17, 10.1038/s41378-018-0018-1
Andersson, 2007, Printable all-organic electrochromic active-matrix displays, Adv. Funct. Mater., 17, 3074, 10.1002/adfm.200601241
Kumar, 2018, Xanthommatin-based electrochromic displays inspired by nature, ACS Appl. Mater. Inter., 10, 43177, 10.1021/acsami.8b14123
Collier, 2018, Aqueous electrolyte compatible electrochromic polymers processed from an environmentally sustainable solvent, ACS Macro Lett., 7, 1208, 10.1021/acsmacrolett.8b00551
Wang, 2016, Mechanical chameleon through dynamic real-time plasmonic tuning, ACS Nano, 10, 1788, 10.1021/acsnano.5b07472
Singh, 2017, ITO-free solution-processed flexible electrochromic devices based on PEDOT:PSS as transparent conducting electrode, ACS Appl. Mater. Inter., 9, 19427, 10.1021/acsami.6b09476
Comiskey, 1998, An electrophoretic ink for all-printed reflective electronic displays, Nature, 394, 253, 10.1038/28349
Yu, 2014, Adaptive optoelectronic camouflage systems with designs inspired by cephalopod skins, Proc. Natl. Acad. Sci. U. S. A., 111, 12998, 10.1073/pnas.1410494111
Xiao, 2016, Stimuli-responsive structurally colored films from bioinspired synthetic melanin nanoparticles, Chem. Mater., 28, 5516, 10.1021/acs.chemmater.6b02127
Fei, 2016, Bioinspired polymeric photonic crystals for high cycling pH-sensing performance, ACS Appl. Mater. Inter., 8, 27091, 10.1021/acsami.6b08724
Yue, 2014, Mechano-actuated ultrafast full-colour switching in layered photonic hydrogels, Nat. Commun., 5, 4659, 10.1038/ncomms5659
Jurewicz, 2020, Mechanochromic and thermochromic sensors based on graphene infused polymer opals, Adv. Funct. Mater., 30, 12
Allen, 2013, Cuttlefish skin papilla morphology suggests a muscular hydrostatic function for rapid changeability, J. Morphol., 274, 645, 10.1002/jmor.20121
Kim, 2019, Reconfigurable soft body trajectories using unidirectionally stretchable composite laminae, Nat. Commun., 10, 3464, 10.1038/s41467-019-11294-7
Pikul, 2017, Stretchable surfaces with programmable 3D texture morphing for synthetic camouflaging skins, Science, 358, 210, 10.1126/science.aan5627
Han, 2021, Multimaterial printing for cephalopod-inspired light-responsive artificial chromatophores, ACS Appl. Mater. Inter., 13, 12735, 10.1021/acsami.0c17623
Siefert, 2019, Bio-inspired pneumatic shape-morphing elastomers, Nat. Mater., 18, 24, 10.1038/s41563-018-0219-x
Christianson, 2018, Translucent soft robots driven by frameless fluid electrode dielectric elastomer actuators, Sci. Robot., 3, eaat1893, 10.1126/scirobotics.aat1893
Xu, 2018, Adaptive infrared-reflecting systems inspired by cephalopods, Science, 359, 1495, 10.1126/science.aar5191
Xu, 2020, Stretchable cephalopod-inspired multimodal camouflage systems, Adv. Mater., 32, 1905717, 10.1002/adma.201905717
Zhao, 2019, Bio-inspired sensing and actuating materials, J. Mater. Chem. C, 7, 6493, 10.1039/C9TC01483G
Wang, 2019, Chameleon-inspired structural-color actuators, Matter, 1, 626, 10.1016/j.matt.2019.05.012
Fu, 2018, Bioinspired living structural color hydrogels, Sci. Robot., 3, eaar8580, 10.1126/scirobotics.aar8580
Wei, 2019, Bioinspired synergistic fluorescence-color-switchable polymeric hydrogel actuators, Angew. Chem. Int. Ed., 58, 16243, 10.1002/anie.201908437