Engineering chromosomal rearrangements in mice

Nature Reviews Genetics - Tập 2 Số 10 - Trang 780-790 - 2001
Yuejin Yu1, Allan Bradley2
1Program in Developmental Biology, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030,
2The Sanger Centre, Hinxton, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Epstein, C. J. The Consequences of Chromosome Imbalance: Principles, Mechanism and Models (Cambridge Univ. Press, Cambridge, UK, 1986).

Shaffer, L. G. & Lupski, J. R. Molecular mechanisms for constitutional chromosomal rearrangements in humans. Annu. Rev. Genet. 34, 297–329 (2000).

Rabbitts, T. H. Chromosomal translocations in human cancer. Nature 372, 143–149 (1994).

Russell, W. L. X-ray induced mutations in mice. Cold Spring Harbor Symp. Quant. Biol. 16, 327–336 (1951).

Russell, L. B. et al. Chlorambucil effectively induces deletion mutations in mouse germ cells. Proc. Natl Acad. Sci. USA 86, 3704–3708 (1989).

Davisson, M. T., Schmidt, C. & Akeson, E. C. Segmental trisomy of murine chromosome 16: a new model system for studying Down syndrome. Prog. Clin. Biol. Res. 360, 263–280 (1990).

Roderick, T. in Utilization of Mammalian Specific-Locus Studies in Hazard Evaluation and Estimation of Genetic Risk (ed. de-Serres, F. & Sheridan, W.) 135–167 (Plenum, New York, 1983).

Stubbs, L., Carver, E. A., Cacheiro, N. L., Shelby, M. & Generoso, W. Generation and characterization of heritable reciprocal translocations in mice. Methods 13, 397–408 (1997).

Reeves, R. H. et al. A mouse model for Down syndrome exhibits learning and behaviour deficits. Nature Genet. 11, 177–184 (1995).

Rinchik, E. M. & Russell, L. B. in Genome Analysis Vol. I (ed. Davies, K. & Tilghman, S.) 121–158 (CSH Laboratory Press, Cold Spring Harbor, 1990).

Rinchik, E. M. Developing genetic reagants to facilitate recovery, analysis, and maintenance of mouse mutations. Mamm. Genome 11, 489–499 (2000).

Ramirez-Solis, R., Liu, P. & Bradley, A. Chromosome engineering in mice. Nature 378, 720–724 (1995).This is the first paper to describe the generation of megabase genomic rearrangements in mice by using chromosomal engineering technology.

Lindsay, E. A. et al. Congenital heart disease in mice deficient for the DiGeorge syndrome region. Nature 401, 379–383 (1999).

Tsai, T. F., Jiang, Y. H., Bressler, J., Armstrong, D. & Beaudet, A. L. Paternal deletion from Snrpn to Ube3a in the mouse causes hypotonia, growth retardation and partial lethality and provides evidence for a gene contributing to Prader–Willi syndrome. Hum. Mol. Genet. 8, 1357–1364 (1999).

Buchholz, F., Refaeli, Y., Trumpp, A. & Bishop, J. M. Inducible chromosomal translocation of AML1 and ETO genes through Cre/loxP-mediated recombination in the mouse. EMBO Rep. 1, 133–139 (2000).

Collins, E. C., Pannell, R., Simpson, E. M., Forster, A. & Rabbitts, T. H. Inter-chromosomal recombination of Mll and Af9 genes mediated by cre–loxP in mouse development. EMBO Rep. 1, 127–132 (2000).

Merscher, S. et al. TBX1 is responsible for cardiovascular defects in velo-cardio-facial/DiGeorge syndrome. Cell 104, 619–629 (2001).

Lindsay, E. A. et al. Tbx1 haploinsufficieny in the DiGeorge syndrome region causes aortic arch defects in mice. Nature 410, 97–101 (2001).

Zheng, B., Mills, A. A. & Bradley, A. A system for rapid generation of coat color-tagged knockouts and defined chromosomal rearrangements in mice. Nucleic Acids Res. 27, 2354–2360 (1999).

Zheng, B. et al. Engineering a mouse balancer chromosome. Nature Genet. 22, 375–378 (1999).This study describes the first mouse balancer chromosome to be developed using chromosomal engineering techniques.

Justice, M. J. in Mouse Genetics and Transgenics (eds Jackson, I. J. & Abbott, C. M.) 185–215 (Oxford Univ. Press, New York, 2000).

Dietrich, W. F. et al. A comprehensive genetic map of the mouse genome. Nature 380, 149–152 (1996); erratum 381, 172 (1996).

Flaherty, L. & Herron, B. The new kid on the block — a whole genome mouse radiation hybrid panel. Mamm. Genome 9, 417–418 (1998).

Li, Z. W. et al. Generation of mice with a 200-kb amyloid precursor protein gene deletion by Cre recombinase-mediated site-specific recombination in embryonic stem cells. Proc. Natl Acad. Sci. USA 93, 6158–6162 (1996); erratum 93, 12052 (1996).

Zheng, B., Sage, M., Sheppeard, E. A., Jurecic, V. & Bradley, A. Engineering mouse chromosomes with Cre–loxP: range, efficiency, and somatic applications. Mol. Cell. Biol. 20, 648–655 (2000).

Liu, P., Zhang, H., McLellan, A., Vogel, H. & Bradley, A. Embryonic lethality and tumorigenesis caused by segmental aneuploidy on mouse chromosome 11. Genetics 150, 1155–1168 (1998).

Ramirez-Solis, R., Davis, A. C. & Bradley, A. in Guide to Techniques in Mouse Development Vol. 225 (eds Wassarman, P. M. & DePamphilis, M. L.) 855–878 (Academic Press, Inc., San Diego, 1993).

Bradley, A., Zheng, B. & Liu, P. Thirteen years of manipulating the mouse genome: a personal history. Int. J. Dev. Biol. 42, 943–950 (1998).

O'Gorman, S., Dagenais, N. A., Qian, M. & Marchuk, Y. Protamine–Cre recombinase transgenes efficiently recombine target sequences in the male germ line of mice, but not in embryonic stem cells. Proc. Natl Acad. Sci. USA 94, 14602–14607 (1997).

Schlake, T. et al. Predetermined chromosomal deletion encompassing the Nf-1 gene. Oncogene 18, 6078–6082 (1999).

Zhu, Y. et al. Genomic interval engineering of mice identifies a novel modulator of triglyceride production. Proc. Natl Acad. Sci. USA 97, 1137–1142 (2000).

Madsen, L. et al. Mice lacking all conventional MHC class II genes. Proc. Natl Acad. Sci. USA 96, 10338–10343 (1999).

Su, H., Wang, X. & Bradley, A. Nested chromosomal deletions induced with retroviral vectors in mice. Nature Genet. 24, 92–95 (2000).This paper described a strategy for efficiently generating nested chromosomal deletions using a recombinant retrovirus. This approach also facilitates the identification of nested end points.

LePage, D. F., Church, D. M., Millie, E., Hassold, T. J. & Conlon, R. A. Rapid generation of nested chromosomal deletions on mouse chromosome. Part 2. Proc. Natl Acad. Sci. USA 97, 10471–10476 (2000).

You, Y. et al. Chromosomal deletion complexes in mice by radiation of embryonic stem cells. Nature Genet. 15, 285–288 (1997).

Thomas, J. W., LaMantia, C. & Magnuson, T. X-ray-induced mutations in mouse embryonic stem cells. Proc. Natl Acad. Sci. USA 95, 1114–1119 (1998).

Kushi, A. et al. Generation of mutant mice with large chromosomal deletion by use of irradiated ES cells — analysis of large deletion around hprt locus of ES cell. Mamm. Genome 9, 269–273 (1998).

Smith, A. J. et al. A site-directed chromosomal translocation induced in embryonic stem cells by Cre–loxP recombination. Nature Genet. 9, 376–385 (1995); erratum 12, 110 (1996).

Van Deursen, J., Fornerod, M., Van Rees, B. & Grosveld, G. Cre-mediated site-specific translocation between nonhomologous mouse chromosomes. Proc. Natl Acad. Sci. USA 92, 7376–7380 (1995).References 38 and 39 introduce the use of targeted Cre/ loxP strategies for generating chromosomal translocations in mouse embryonic stem cells.

Lyon, M. F. & Meredith, R. Autosomal translocations causing male sterility and viable aneuploidy in the mouse. Cytogenetics 5, 335–354 (1966).

Scambler, P. J. The 22q11 deletion syndromes. Hum. Mol. Genet. 9, 2421–2426 (2000).

Dunham, I. et al. The DNA sequence of human chromosome 22. Nature 402, 489–495 (1999); erratum 404, 904 (2000).

Herault, Y., Rassoulzadegan, M., Cuzin, F. & Duboule, D. Engineering chromosomes in mice through targeted meiotic recombination (TAMERE). Nature Genet. 20, 381–384 (1998).

Matsusaka, T. et al. Dual renin gene targeting by Cre-mediated interchromosomal recombination. Genomics 64, 127–131 (2000).

Antoch, M. P. et al. Functional identification of the mouse circadian Clock gene by transgenic BAC rescue. Cell 89, 655–667 (1997).

Hejna, J. A. et al. Functional complementation by electroporation of human BACs into mammalian fibroblast cells. Nucleic Acids Res. 26, 1124–1125 (1998).

Liu, P. et al. Requirement for Wnt3 in vertebrate axis formation. Nature Genet. 22, 361–365 (1999).

Mackay, T. F. Quantitative trait loci in Drosophila. Nature Rev. Genet. 2, 11–20 (2001).

Reeves, R. H., Baxter, L. L. & Richtsmeier, J. T. Too much of a good thing: mechanisms of gene action in Down syndrome. Trends Genet. 17, 83–88 (2001).

Sago, H. et al. Ts1Cje, a partial trisomy 16 mouse model for Down syndrome, exhibits learning and behavioral abnormalities. Proc. Natl Acad. Sci. USA 95, 6256–6261 (1998).

Hoess, R. H. & Abremski, K. in Nucleic Acids and Molecular Biology Vol. 4 (eds Eckstein, F. & Lilley, D. M. J.) 99–109 (Springer, Berlin and Heidelberg, 1990).

Sadowski, P. D. Site-specific genetic recombination: hops, flips, and flops. FASEB J. 7, 760–767 (1993).