Hu, 2010, J. Mater. Chem., 20, 3346, 10.1039/b922872a
Hu, 2012, Prog. Polym. Sci., 37, 1720, 10.1016/j.progpolymsci.2012.06.001
Gu, 2017, Appl. Sci., 7, 1258, 10.3390/app7121258
Yang, 2020, Adv. Intell. Syst., 2, 1900077, 10.1002/aisy.201900077
Zeng, 2020, ACS Sustainable Chem. Eng., 8, 1538, 10.1021/acssuschemeng.9b06080
Montero De Espinosa, 2017, Chem. Rev., 117, 12851, 10.1021/acs.chemrev.7b00168
Kim, 2001, J. Macromol. Sci., Part B: Phys., 40, 1179, 10.1081/MB-100107809
Xie, 2011, Polymer, 52, 4985, 10.1016/j.polymer.2011.08.003
H.Bhanushali , S.Amrutkar , S.Mestry and S. T.Mhaske , Shape memory polymer nanocomposite: a review on structure–property relationship , Springer , Berlin Heidelberg , 2021
Sharp, 2006, J. Neural Eng., 3, L23, 10.1088/1741-2560/3/4/L02
Gao, 2019, Mater. Horiz., 6, 931, 10.1039/C8MH01070F
Liu, 2007, J. Mater. Chem., 17, 1543, 10.1039/b615954k
Menon, 2019, Polym. Chem., 10, 4370, 10.1039/C9PY00854C
Xu, 2020, Macromol. Chem. Phys., 221, 1, 10.1002/macp.202000273
Huang, 2010, J. Mater. Chem., 20, 3367, 10.1039/b922943d
Shirole, 2018, Macromolecules, 51, 1841, 10.1021/acs.macromol.7b01728
Melly, 2020, J. Mater. Sci., 55, 10975, 10.1007/s10853-020-04761-w
Lin, 1998, J. Appl. Polym. Sci., 69, 1575, 10.1002/(SICI)1097-4628(19980822)69:8<1575::AID-APP12>3.0.CO;2-U
Jeong, 2000, J. Mater. Sci., 35, 1579, 10.1023/A:1004761206709
Ji, 2007, Polymer, 48, 5133, 10.1016/j.polymer.2007.06.032
Chen, 2011, J. Mater. Sci., 46, 5294, 10.1007/s10853-011-5469-9
Ji, 2011, J. Macromol. Sci., Part B: Phys., 50, 2290, 10.1080/00222348.2011.562091
Xu, 2016, Macromolecules, 49, 5931, 10.1021/acs.macromol.6b01172
Luo, 2020, New J. Chem., 44, 658, 10.1039/C9NJ05189A
Ratna, 2008, J. Mater. Sci., 43, 254, 10.1007/s10853-007-2176-7
Biswas, 2018, J. Phys. Chem. C, 122, 11167, 10.1021/acs.jpcc.8b02824
Thompson, 2017, Bioconjugate Chem., 28, 1325, 10.1021/acs.bioconjchem.7b00115
Rathore, 2001, J. Am. Chem. Soc., 123, 5231, 10.1021/ja004030d
Tanaka, 2004, Macromolecules, 37, 1370, 10.1021/ma035472n
Johnson, 2014, J. Mater. Chem. B, 2, 2554, 10.1039/c3tb21476a
Matolyak, 2017, Org. Biomol. Chem., 15, 7607, 10.1039/C7OB01352C
Matolyak, 2018, Biomacromolecules, 19, 3445, 10.1021/acs.biomac.8b00762
Huang, 2013, Macromol. Biosci., 13, 161, 10.1002/mabi.201200306
Gu, 2018, Polymer, 10, 637, 10.3390/polym10060637
Gu, 2018, Mater. Today Commun., 17, 419, 10.1016/j.mtcomm.2018.10.005
Gavel, 2018, ACS Appl. Mater. Interfaces, 10, 10729, 10.1021/acsami.8b00501
Matolyak, 2016, Biomacromolecules, 17, 3931, 10.1021/acs.biomac.6b01309
Katakai, 1985, J. Org. Chem., 50, 715, 10.1021/jo00205a039
Collet, 1996, Tetrahedron Lett., 37, 9043, 10.1016/S0040-4039(96)01974-0
Kaupplnen, 1981, Anal. Chem., 53, 1454, 10.1021/ac00232a034
Surewicz, 1988, Biochim. Biophys. Acta, Protein Struct. Mol. Enzymol., 952, 115, 10.1016/0167-4838(88)90107-0
Dong, 1990, Biochemistry, 29, 3303, 10.1021/bi00465a022
Yilgör, 2000, Polymer, 41, 849, 10.1016/S0032-3861(99)00245-1
Surewicz, 1993, Biochemistry, 32, 389, 10.1021/bi00053a001
Tan, 2017, Polymer, 9, 184, 10.3390/polym9050184
Pangon, 2014, Polymer, 55, 1837, 10.1016/j.polymer.2014.02.009
Iqbal, 2018, ChemistrySelect, 3, 1976, 10.1002/slct.201703176
He, 2014, J. Mater. Sci., 49, 7339, 10.1007/s10853-014-8458-y
Sears, 2016, J. Tissue Eng., 7, 1, 10.1177/2041731416679363
Chen, 2020, ACS Appl. Mater. Interfaces, 12, 32006, 10.1021/acsami.0c08958
F. S.Parker , in Applications of Infrared Spectroscopy in Biochemistry, Biology, and Medicine , Springer US , 1971 , 165–172
Brunette, 1982, Macromolecules, 15, 71, 10.1021/ma00229a014
Pimentel, 1956, J. Chem. Phys., 24, 639, 10.1063/1.1742588
S. L.Hsu , J.Patel and W.Zhao , in Molecular Characterization of Polymers , ed. M. I. Malik , J. Mays and M. R. B. T.-M. C. of P. Shah , Elsevier , 2021 , 369–407
Kuo, 2011, Macromolecules, 44, 7315, 10.1021/ma200721e
Lu, 2015, RSC Adv., 5, 88539, 10.1039/C5RA19037A
Ibarboure, 2007, Polymer, 48, 3717, 10.1016/j.polymer.2007.04.046
Johnson, 2012, Biomacromolecules, 13, 1279, 10.1021/bm201800v
Li, 2019, Polymer, 11, 838, 10.3390/polym11050838
Song, 2005, Eur. Polym. J., 41, 259, 10.1016/j.eurpolymj.2004.09.012
Pongkitwitoon, 2009, Polymer, 50, 6305, 10.1016/j.polymer.2009.10.067
Tian, 2016, Polymer, 8, 197, 10.3390/polym8050197
Papadopoulos, 2006, Biomacromolecules, 7, 618, 10.1021/bm050772t
Ibarboure, 2006, J. Polym. Sci., Part A: Polym. Chem., 44, 4668, 10.1002/pola.21559
Korley, 2006, Polymer, 47, 3073, 10.1016/j.polymer.2006.02.093
Sheth, 2005, Polymer, 46, 7317, 10.1016/j.polymer.2005.04.041
Xia, 2005, Polym. Int., 54, 1392, 10.1002/pi.1858
Ivens, 2011, eXPRESS Polym. Lett., 5, 254, 10.3144/expresspolymlett.2011.25
Tcharkhtchi, 2014, Polymer, 6, 1144, 10.3390/polym6041144
Li, 2021, Polym. Eng. Sci., 61, 1624, 10.1002/pen.25686
Xu, 2010, Proc. Natl. Acad. Sci. U. S. A., 107, 7652, 10.1073/pnas.0912481107
Farzaneh, 2013, J. Appl. Polym. Sci., 128, 3240, 10.1002/app.38530
Henzler Wildman, 2002, Biopolymers, 64, 246, 10.1002/bip.10180
Zhang, 2016, Green Chem., 18, 4667, 10.1039/C6GC01096B