Kỹ thuật biến đổi các hợp chất peptide–polyurea lấy cảm hứng sinh học với tính chất nhớ hình thermoresponsive

Molecular Systems Design and Engineering - Tập 6 Số 12 - Trang 1003-1015
Daseul Jang1, Chase B. Thompson1, Sourav Chatterjee1, LaShanda T. J. Korley2,1
1Department of Materials Science and Engineering, University of Delaware, 127 The Green, 201 DuPont Hall, Newark, DE, 19716, USA
2Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St, Newark, DE 19716, USA

Tóm tắt

Bài báo này nêu bật ảnh hưởng của cấu trúc bậc hai của peptide đến hành vi nhớ hình của các polyurea peptide, được thúc đẩy bởi sự sắp xếp của liên kết hidro và hình thái tách biệt vi mô.

Từ khóa


Tài liệu tham khảo

Hu, 2010, J. Mater. Chem., 20, 3346, 10.1039/b922872a

Hu, 2012, Prog. Polym. Sci., 37, 1720, 10.1016/j.progpolymsci.2012.06.001

Gu, 2017, Appl. Sci., 7, 1258, 10.3390/app7121258

Yang, 2020, Adv. Intell. Syst., 2, 1900077, 10.1002/aisy.201900077

Zeng, 2020, ACS Sustainable Chem. Eng., 8, 1538, 10.1021/acssuschemeng.9b06080

Montero De Espinosa, 2017, Chem. Rev., 117, 12851, 10.1021/acs.chemrev.7b00168

Kim, 2001, J. Macromol. Sci., Part B: Phys., 40, 1179, 10.1081/MB-100107809

Xie, 2011, Polymer, 52, 4985, 10.1016/j.polymer.2011.08.003

H.Bhanushali , S.Amrutkar , S.Mestry and S. T.Mhaske , Shape memory polymer nanocomposite: a review on structure–property relationship , Springer , Berlin Heidelberg , 2021

Sharp, 2006, J. Neural Eng., 3, L23, 10.1088/1741-2560/3/4/L02

Gao, 2019, Mater. Horiz., 6, 931, 10.1039/C8MH01070F

Liu, 2007, J. Mater. Chem., 17, 1543, 10.1039/b615954k

Menon, 2019, Polym. Chem., 10, 4370, 10.1039/C9PY00854C

Xu, 2020, Macromol. Chem. Phys., 221, 1, 10.1002/macp.202000273

Huang, 2010, J. Mater. Chem., 20, 3367, 10.1039/b922943d

Shirole, 2018, Macromolecules, 51, 1841, 10.1021/acs.macromol.7b01728

Melly, 2020, J. Mater. Sci., 55, 10975, 10.1007/s10853-020-04761-w

Lin, 1998, J. Appl. Polym. Sci., 69, 1575, 10.1002/(SICI)1097-4628(19980822)69:8<1575::AID-APP12>3.0.CO;2-U

Jeong, 2000, J. Mater. Sci., 35, 1579, 10.1023/A:1004761206709

Ji, 2007, Polymer, 48, 5133, 10.1016/j.polymer.2007.06.032

Chen, 2011, J. Mater. Sci., 46, 5294, 10.1007/s10853-011-5469-9

Ji, 2011, J. Macromol. Sci., Part B: Phys., 50, 2290, 10.1080/00222348.2011.562091

Xu, 2016, Macromolecules, 49, 5931, 10.1021/acs.macromol.6b01172

Luo, 2020, New J. Chem., 44, 658, 10.1039/C9NJ05189A

Ratna, 2008, J. Mater. Sci., 43, 254, 10.1007/s10853-007-2176-7

Biswas, 2018, J. Phys. Chem. C, 122, 11167, 10.1021/acs.jpcc.8b02824

Thompson, 2017, Bioconjugate Chem., 28, 1325, 10.1021/acs.bioconjchem.7b00115

Rathore, 2001, J. Am. Chem. Soc., 123, 5231, 10.1021/ja004030d

Tanaka, 2004, Macromolecules, 37, 1370, 10.1021/ma035472n

Johnson, 2014, J. Mater. Chem. B, 2, 2554, 10.1039/c3tb21476a

Matolyak, 2017, Org. Biomol. Chem., 15, 7607, 10.1039/C7OB01352C

Matolyak, 2018, Biomacromolecules, 19, 3445, 10.1021/acs.biomac.8b00762

Huang, 2013, Macromol. Biosci., 13, 161, 10.1002/mabi.201200306

Gu, 2018, Polymer, 10, 637, 10.3390/polym10060637

Gu, 2018, Mater. Today Commun., 17, 419, 10.1016/j.mtcomm.2018.10.005

Gavel, 2018, ACS Appl. Mater. Interfaces, 10, 10729, 10.1021/acsami.8b00501

Matolyak, 2016, Biomacromolecules, 17, 3931, 10.1021/acs.biomac.6b01309

Katakai, 1985, J. Org. Chem., 50, 715, 10.1021/jo00205a039

Collet, 1996, Tetrahedron Lett., 37, 9043, 10.1016/S0040-4039(96)01974-0

Kaupplnen, 1981, Anal. Chem., 53, 1454, 10.1021/ac00232a034

Surewicz, 1988, Biochim. Biophys. Acta, Protein Struct. Mol. Enzymol., 952, 115, 10.1016/0167-4838(88)90107-0

Dong, 1990, Biochemistry, 29, 3303, 10.1021/bi00465a022

Yilgör, 2000, Polymer, 41, 849, 10.1016/S0032-3861(99)00245-1

Surewicz, 1993, Biochemistry, 32, 389, 10.1021/bi00053a001

Tan, 2017, Polymer, 9, 184, 10.3390/polym9050184

Pangon, 2014, Polymer, 55, 1837, 10.1016/j.polymer.2014.02.009

Iqbal, 2018, ChemistrySelect, 3, 1976, 10.1002/slct.201703176

He, 2014, J. Mater. Sci., 49, 7339, 10.1007/s10853-014-8458-y

Sears, 2016, J. Tissue Eng., 7, 1, 10.1177/2041731416679363

Chen, 2020, ACS Appl. Mater. Interfaces, 12, 32006, 10.1021/acsami.0c08958

F. S.Parker , in Applications of Infrared Spectroscopy in Biochemistry, Biology, and Medicine , Springer US , 1971 , 165–172

Brunette, 1982, Macromolecules, 15, 71, 10.1021/ma00229a014

Pimentel, 1956, J. Chem. Phys., 24, 639, 10.1063/1.1742588

S. L.Hsu , J.Patel and W.Zhao , in Molecular Characterization of Polymers , ed. M. I. Malik , J. Mays and M. R. B. T.-M. C. of P. Shah , Elsevier , 2021 , 369–407

Kuo, 2011, Macromolecules, 44, 7315, 10.1021/ma200721e

Lu, 2015, RSC Adv., 5, 88539, 10.1039/C5RA19037A

Ibarboure, 2007, Polymer, 48, 3717, 10.1016/j.polymer.2007.04.046

Johnson, 2012, Biomacromolecules, 13, 1279, 10.1021/bm201800v

Li, 2019, Polymer, 11, 838, 10.3390/polym11050838

Song, 2005, Eur. Polym. J., 41, 259, 10.1016/j.eurpolymj.2004.09.012

Pongkitwitoon, 2009, Polymer, 50, 6305, 10.1016/j.polymer.2009.10.067

Tian, 2016, Polymer, 8, 197, 10.3390/polym8050197

Papadopoulos, 2006, Biomacromolecules, 7, 618, 10.1021/bm050772t

Ibarboure, 2006, J. Polym. Sci., Part A: Polym. Chem., 44, 4668, 10.1002/pola.21559

Korley, 2006, Polymer, 47, 3073, 10.1016/j.polymer.2006.02.093

Sheth, 2005, Polymer, 46, 7317, 10.1016/j.polymer.2005.04.041

Xia, 2005, Polym. Int., 54, 1392, 10.1002/pi.1858

Ivens, 2011, eXPRESS Polym. Lett., 5, 254, 10.3144/expresspolymlett.2011.25

Tcharkhtchi, 2014, Polymer, 6, 1144, 10.3390/polym6041144

Li, 2021, Polym. Eng. Sci., 61, 1624, 10.1002/pen.25686

Xu, 2010, Proc. Natl. Acad. Sci. U. S. A., 107, 7652, 10.1073/pnas.0912481107

Farzaneh, 2013, J. Appl. Polym. Sci., 128, 3240, 10.1002/app.38530

Henzler Wildman, 2002, Biopolymers, 64, 246, 10.1002/bip.10180

Zhang, 2016, Green Chem., 18, 4667, 10.1039/C6GC01096B