Engineering Modular Viral Scaffolds for Targeted Bacterial Population Editing

Cell Systems - Tập 1 Số 3 - Trang 187-196 - 2015
Hiroki Ando1, Sébastien Lemire1, Diana P. Pires2,1, Timothy K. Lu1
1Department of Electrical Engineering and Computer Science and Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
2Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal

Tóm tắt

Từ khóa


Tài liệu tham khảo

Beier, 1977, Isolation of recombinants between T7 and T3 bacteriophages and their use in vitro transcriptional mapping, J. Virol., 21, 753, 10.1128/JVI.21.2.753-765.1977

Bessler, 1973, A bacteriophage-induced depolymerase active on Klebsiella K11 capsular polysaccharide, Virology, 56, 134, 10.1016/0042-6822(73)90293-6

Bikard, 2014, Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials, Nat. Biotechnol., 32, 1146, 10.1038/nbt.3043

Brüssow, 2012, What is needed for phage therapy to become a reality in Western medicine?, Virology, 434, 138, 10.1016/j.virol.2012.09.015

Carlton, 1999, Phage therapy: past history and future prospects, Arch. Immunol. Ther. Exp. (Warsz.), 47, 267

Citorik, 2014, Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases, Nat. Biotechnol., 32, 1141, 10.1038/nbt.3011

Cryan, 2012, Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour, Nat. Rev. Neurosci., 13, 701, 10.1038/nrn3346

Cuervo, 2013, Structural characterization of the bacteriophage T7 tail machinery, J. Biol. Chem., 288, 26290, 10.1074/jbc.M113.491209

d’Herelle, 1931, Bacteriophage as a treatment in acute medical and surgical infections, Bull. N. Y. Acad. Med., 7, 329

Demerec, 1945, Bacteriophage-resistant mutants in Escherichia coli, Genetics, 30, 119, 10.1093/genetics/30.2.119

Dietz, 1990, The gene for Klebsiella bacteriophage K11 RNA polymerase: sequence and comparison with the homologous genes of phages T7, T3, and SP6, Mol. Gen. Genet., 221, 283, 10.1007/BF00261733

Dunn, 1983, Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements, J. Mol. Biol., 166, 477, 10.1016/S0022-2836(83)80282-4

Durfee, 2008, The complete genome sequence of Escherichia coli DH10B: insights into the biology of a laboratory workhorse, J. Bacteriol., 190, 2597, 10.1128/JB.01695-07

Fischbach, 2009, Antibiotics for emerging pathogens, Science, 325, 1089, 10.1126/science.1176667

Garcia, 2003, The genome sequence of Yersinia pestis bacteriophage phiA1122 reveals an intimate history with the coliphage T3 and T7 genomes, J. Bacteriol., 185, 5248, 10.1128/JB.185.17.5248-5262.2003

Gibson, 2008, Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome, Science, 319, 1215, 10.1126/science.1151721

Gibson, 2014, The yin and yang of bacterial resilience in the human gut microbiota, J. Mol. Biol., 426, 3866, 10.1016/j.jmb.2014.05.029

Grice, 2012, The human microbiome: our second genome, Annu. Rev. Genomics Hum. Genet., 13, 151, 10.1146/annurev-genom-090711-163814

Hendrix, 2003, Bacteriophage genomics, Curr. Opin. Microbiol., 6, 506, 10.1016/j.mib.2003.09.004

Hu, 2013, The bacteriophage t7 virion undergoes extensive structural remodeling during infection, Science, 339, 576, 10.1126/science.1231887

Jaschke, 2012, A fully decompressed synthetic bacteriophage øX174 genome assembled and archived in yeast, Virology, 434, 278, 10.1016/j.virol.2012.09.020

Kiljunen, 2011, Identification of the lipopolysaccharide core of Yersinia pestis and Yersinia pseudotuberculosis as the receptor for bacteriophage φA1122, J. Bacteriol., 193, 4963, 10.1128/JB.00339-11

Kiro, 2014, Efficient engineering of a bacteriophage genome using the type I-E CRISPR-Cas system, RNA Biol., 11, 42, 10.4161/rna.27766

Lin, 2011, Inhibition of bacterial conjugation by phage M13 and its protein g3p: quantitative analysis and model, PLoS ONE, 6, e19991, 10.1371/journal.pone.0019991

Lin, 2012, A T3 and T7 recombinant phage acquires efficient adsorption and a broader host range, PLoS ONE, 7, e30954, 10.1371/journal.pone.0030954

Lu, 2007, Dispersing biofilms with engineered enzymatic bacteriophage, Proc. Natl. Acad. Sci. USA, 104, 11197, 10.1073/pnas.0704624104

Lu, 2009, Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy, Proc. Natl. Acad. Sci. USA, 106, 4629, 10.1073/pnas.0800442106

Lu, 2011, The next generation of bacteriophage therapy, Curr. Opin. Microbiol., 14, 524, 10.1016/j.mib.2011.07.028

Lu, T.K., Koeris, M.S., Chevalier, B.S., Holder, J.W., Mckenzie, G.J., and Brownell, D.R. (2013). Recombinant phage and methods. Patent WO 2013049121 A2.

Martel, 2014, CRISPR-Cas: an efficient tool for genome engineering of virulent bacteriophages, Nucleic Acids Res., 42, 9504, 10.1093/nar/gku628

Molineux, 2006, The T7 group, 277

Pajunen, 2002, Complete nucleotide sequence and likely recombinatorial origin of bacteriophage T3, J. Mol. Biol., 319, 1115, 10.1016/S0022-2836(02)00384-4

Pouillot, 2010, Genetically engineered virulent phage banks in the detection and control of emergent pathogenic bacteria, Biosecur Bioterror, 8, 155, 10.1089/bsp.2009.0057

Qimron, U., Tabor, S., and Richardson, C.C. (2010). New details about bacteriophage T7-host interactions. Microbe, March 2010. http://www.microbemagazine.org/index.php?option=com_content&view=category&layout=blog&id=376&Itemid=531.

Rashid, 2012, A Yersinia pestis-specific, lytic phage preparation significantly reduces viable Y. pestis on various hard surfaces experimentally contaminated with the bacterium, Bacteriophage, 2, 168, 10.4161/bact.22240

Shin, 2012, Genome replication, synthesis, and assembly of the bacteriophage T7 in a single cell-free reaction, ACS Synth. Biol., 1, 408, 10.1021/sb300049p

Steven, 1988, Molecular substructure of a viral receptor-recognition protein. The gp17 tail-fiber of bacteriophage T7, J. Mol. Biol., 200, 351, 10.1016/0022-2836(88)90246-X

Sulakvelidze, 2001, Bacteriophage therapy, Antimicrob. Agents Chemother., 45, 649, 10.1128/AAC.45.3.649-659.2001

Tétart, 1998, Genome plasticity in the distal tail fiber locus of the T-even bacteriophage: recombination between conserved motifs swaps adhesin specificity, J. Mol. Biol., 282, 543, 10.1006/jmbi.1998.2047

Trojet, 2011, The gp38 adhesins of the T4 superfamily: a complex modular determinant of the phage’s host specificity, Genome Biol. Evol., 3, 674, 10.1093/gbe/evr059

Yaung, 2014, CRISPR/Cas9-mediated phage resistance is not impeded by the DNA modifications of phage T4, PLoS ONE, 9, e98811, 10.1371/journal.pone.0098811

Yoichi, 2005, Alteration of tail fiber protein gp38 enables T2 phage to infect Escherichia coli O157:H7, J. Biotechnol., 115, 101, 10.1016/j.jbiotec.2004.08.003

Zeeuwen, 2013, Microbiome and skin diseases, Curr. Opin. Allergy Clin. Immunol., 13, 514, 10.1097/ACI.0b013e328364ebeb