Engineering Modular Viral Scaffolds for Targeted Bacterial Population Editing
Tóm tắt
Từ khóa
Tài liệu tham khảo
Beier, 1977, Isolation of recombinants between T7 and T3 bacteriophages and their use in vitro transcriptional mapping, J. Virol., 21, 753, 10.1128/JVI.21.2.753-765.1977
Bessler, 1973, A bacteriophage-induced depolymerase active on Klebsiella K11 capsular polysaccharide, Virology, 56, 134, 10.1016/0042-6822(73)90293-6
Bikard, 2014, Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials, Nat. Biotechnol., 32, 1146, 10.1038/nbt.3043
Brüssow, 2012, What is needed for phage therapy to become a reality in Western medicine?, Virology, 434, 138, 10.1016/j.virol.2012.09.015
Carlton, 1999, Phage therapy: past history and future prospects, Arch. Immunol. Ther. Exp. (Warsz.), 47, 267
Citorik, 2014, Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases, Nat. Biotechnol., 32, 1141, 10.1038/nbt.3011
Cryan, 2012, Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour, Nat. Rev. Neurosci., 13, 701, 10.1038/nrn3346
Cuervo, 2013, Structural characterization of the bacteriophage T7 tail machinery, J. Biol. Chem., 288, 26290, 10.1074/jbc.M113.491209
d’Herelle, 1931, Bacteriophage as a treatment in acute medical and surgical infections, Bull. N. Y. Acad. Med., 7, 329
Demerec, 1945, Bacteriophage-resistant mutants in Escherichia coli, Genetics, 30, 119, 10.1093/genetics/30.2.119
Dietz, 1990, The gene for Klebsiella bacteriophage K11 RNA polymerase: sequence and comparison with the homologous genes of phages T7, T3, and SP6, Mol. Gen. Genet., 221, 283, 10.1007/BF00261733
Dunn, 1983, Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements, J. Mol. Biol., 166, 477, 10.1016/S0022-2836(83)80282-4
Durfee, 2008, The complete genome sequence of Escherichia coli DH10B: insights into the biology of a laboratory workhorse, J. Bacteriol., 190, 2597, 10.1128/JB.01695-07
Garcia, 2003, The genome sequence of Yersinia pestis bacteriophage phiA1122 reveals an intimate history with the coliphage T3 and T7 genomes, J. Bacteriol., 185, 5248, 10.1128/JB.185.17.5248-5262.2003
Gibson, 2008, Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome, Science, 319, 1215, 10.1126/science.1151721
Gibson, 2014, The yin and yang of bacterial resilience in the human gut microbiota, J. Mol. Biol., 426, 3866, 10.1016/j.jmb.2014.05.029
Grice, 2012, The human microbiome: our second genome, Annu. Rev. Genomics Hum. Genet., 13, 151, 10.1146/annurev-genom-090711-163814
Hu, 2013, The bacteriophage t7 virion undergoes extensive structural remodeling during infection, Science, 339, 576, 10.1126/science.1231887
Jaschke, 2012, A fully decompressed synthetic bacteriophage øX174 genome assembled and archived in yeast, Virology, 434, 278, 10.1016/j.virol.2012.09.020
Kiljunen, 2011, Identification of the lipopolysaccharide core of Yersinia pestis and Yersinia pseudotuberculosis as the receptor for bacteriophage φA1122, J. Bacteriol., 193, 4963, 10.1128/JB.00339-11
Kiro, 2014, Efficient engineering of a bacteriophage genome using the type I-E CRISPR-Cas system, RNA Biol., 11, 42, 10.4161/rna.27766
Lin, 2011, Inhibition of bacterial conjugation by phage M13 and its protein g3p: quantitative analysis and model, PLoS ONE, 6, e19991, 10.1371/journal.pone.0019991
Lin, 2012, A T3 and T7 recombinant phage acquires efficient adsorption and a broader host range, PLoS ONE, 7, e30954, 10.1371/journal.pone.0030954
Lu, 2007, Dispersing biofilms with engineered enzymatic bacteriophage, Proc. Natl. Acad. Sci. USA, 104, 11197, 10.1073/pnas.0704624104
Lu, 2009, Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy, Proc. Natl. Acad. Sci. USA, 106, 4629, 10.1073/pnas.0800442106
Lu, 2011, The next generation of bacteriophage therapy, Curr. Opin. Microbiol., 14, 524, 10.1016/j.mib.2011.07.028
Lu, T.K., Koeris, M.S., Chevalier, B.S., Holder, J.W., Mckenzie, G.J., and Brownell, D.R. (2013). Recombinant phage and methods. Patent WO 2013049121 A2.
Martel, 2014, CRISPR-Cas: an efficient tool for genome engineering of virulent bacteriophages, Nucleic Acids Res., 42, 9504, 10.1093/nar/gku628
Molineux, 2006, The T7 group, 277
Pajunen, 2002, Complete nucleotide sequence and likely recombinatorial origin of bacteriophage T3, J. Mol. Biol., 319, 1115, 10.1016/S0022-2836(02)00384-4
Pouillot, 2010, Genetically engineered virulent phage banks in the detection and control of emergent pathogenic bacteria, Biosecur Bioterror, 8, 155, 10.1089/bsp.2009.0057
Qimron, U., Tabor, S., and Richardson, C.C. (2010). New details about bacteriophage T7-host interactions. Microbe, March 2010. http://www.microbemagazine.org/index.php?option=com_content&view=category&layout=blog&id=376&Itemid=531.
Rashid, 2012, A Yersinia pestis-specific, lytic phage preparation significantly reduces viable Y. pestis on various hard surfaces experimentally contaminated with the bacterium, Bacteriophage, 2, 168, 10.4161/bact.22240
Shin, 2012, Genome replication, synthesis, and assembly of the bacteriophage T7 in a single cell-free reaction, ACS Synth. Biol., 1, 408, 10.1021/sb300049p
Steven, 1988, Molecular substructure of a viral receptor-recognition protein. The gp17 tail-fiber of bacteriophage T7, J. Mol. Biol., 200, 351, 10.1016/0022-2836(88)90246-X
Sulakvelidze, 2001, Bacteriophage therapy, Antimicrob. Agents Chemother., 45, 649, 10.1128/AAC.45.3.649-659.2001
Tétart, 1998, Genome plasticity in the distal tail fiber locus of the T-even bacteriophage: recombination between conserved motifs swaps adhesin specificity, J. Mol. Biol., 282, 543, 10.1006/jmbi.1998.2047
Trojet, 2011, The gp38 adhesins of the T4 superfamily: a complex modular determinant of the phage’s host specificity, Genome Biol. Evol., 3, 674, 10.1093/gbe/evr059
Yaung, 2014, CRISPR/Cas9-mediated phage resistance is not impeded by the DNA modifications of phage T4, PLoS ONE, 9, e98811, 10.1371/journal.pone.0098811
Yoichi, 2005, Alteration of tail fiber protein gp38 enables T2 phage to infect Escherichia coli O157:H7, J. Biotechnol., 115, 101, 10.1016/j.jbiotec.2004.08.003