Các túi ngoại bào được thiết kế cho đột quỵ thiếu máu: một đánh giá hệ thống và phân tích tổng hợp các nghiên cứu tiền lâm sàng

Péngtāo Li1, Rui Yin1, Yi-Hao Chen1, Jianbo Chang1, Yang Ling1, Xiaoyu Liu1, Houshi Xu1, Xiao Zhang1, Shihua Wang2, Qunying Han2, Junji Wei1
1Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
2Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences / School of Basic Medicine, Peking Union Medical College, Beijing, China

Tóm tắt

Tóm tắt Nền tảng Đánh giá hệ thống và phân tích tổng hợp này nhằm mục đích đánh giá hiệu quả của các túi ngoại bào được thiết kế (EEVs) trong điều trị đột quỵ thiếu máu (IS) trong các nghiên cứu tiền lâm sàng và so sánh chúng với các túi ngoại bào tự nhiên (EVs). Đánh giá hệ thống cung cấp một cái nhìn cập nhật về tình trạng hiện tại của tài liệu về việc sử dụng EEVs cho IS và thông báo cho các nghiên cứu trong tương lai trong lĩnh vực này. Phương pháp Chúng tôi đã tìm kiếm trên các cơ sở dữ liệu PubMed, EMBASE, Web of Science, Cochrane Library, và Scopus cho các nghiên cứu tiền lâm sàng đã trải qua đánh giá đồng nghiệp về hiệu ứng điều trị của EEVs đối với IS. Các cơ sở dữ liệu này trải dài từ lúc bắt đầu đến ngày 1 tháng 8 năm 2023. Các chỉ số kết quả bao gồm thể tích nhồi máu, điểm số thần kinh, điểm số hành vi, tỷ lệ apoptosis, số lượng tế bào thần kinh, và mức độ của IL-1β, IL-6 và TNF-α. Bảng kiểm CAMARADES được sử dụng để đánh giá chất lượng và rủi ro thiên lệch của các nghiên cứu. Tất cả các phân tích thống kê được thực hiện bằng phần mềm RevMan 5.4. Kết quả Tổng cộng có 28 nghiên cứu với 1760 động vật đáp ứng tiêu chí đưa vào. Kết quả của phân tích tổng hợp cho thấy rằng so với các EVs tự nhiên, EEVs đã giảm thể tích nhồi máu (tỷ lệ: SMD = -2.33, 95% CI: -2.92, -1.73; kích thước: SMD = -2.36, 95% CI: -4.09, -0.63), cải thiện điểm số thần kinh (mNSS: SMD = -1.78, 95% CI: -2.39, -1.17; Zea Longa: SMD = -2.75, 95% CI: -3.79, -1.71), thúc đẩy phục hồi hành vi (thử nghiệm rotarod: SMD = 2.50, 95% CI: 1.81, 3.18; thử nghiệm đi trên lưới: SMD = -3.45, 95% CI: -5.15, -1.75; thử nghiệm gỡ bỏ keo dính: SMD = -2.60, 95% CI: -4.27, -0.93; thử nghiệm mê cung Morris: SMD = -3.91, 95% CI: -7.03, -0.79), và giảm sự phóng thích các yếu tố gây viêm (IL-1β: SMD = -2.02, 95% CI: -2.77, -1.27; IL-6: SMD = -3.01, 95% CI: -4.47, -1.55; TNF-α: SMD = -2.72, 95% CI: -4.30, -1.13), đồng thời tăng số lượng tế bào thần kinh (tỷ lệ apoptosis: SMD = -2.24, 95% CI: -3.32, -1.16; số lượng tế bào thần kinh: SMD = 3.70, 95% CI: 2.44, 4.96). Các biểu đồ phễu cho hai chỉ số kết quả chính là bất đối xứng, cho thấy sự thiên lệch về công bố. Điểm trung vị trên bảng kiểm CAMARADES là 7 điểm (IQR: 6–9). Kết luận Phân tích tổng hợp này cho thấy EEVs vượt trội hơn EVs tự nhiên trong điều trị IS. Tuy nhiên, nghiên cứu trong lĩnh vực này vẫn còn ở giai đoạn đầu, và cần nhiều nghiên cứu hơn để hiểu hoàn toàn cơ chế điều trị tiềm năng của EEVs và khả năng sử dụng của chúng trong điều trị IS. Số đăng ký PROSPERO CRD42022368744.

Từ khóa


Tài liệu tham khảo

Donnan GA, Fisher M, Macleod M, et al. Stroke Lancet. 2008;371:1612–23. https://doi.org/10.1016/S0140-6736(08)60694-7

Marei HE, Hasan A, Rizzi R, et al. Potential of stem cell-based therapy for ischemic stroke. Front Neurol. 2018;9:34. https://doi.org/10.3389/fneur.2018.00034

Ghosh D, Sehgal K, Sodnar B, et al. Drug repurposing for stroke intervention. Drug Discovery Today. 2022;27(7):1974–82. https://doi.org/10.1016/j.drudis.2022.03.003

Suzuki K, Matsumaru Y, Takeuchi M, et al. Effect of mechanical thrombectomy without vs with intravenous thrombolysis on functional outcome among patients with acute ischemic stroke: the skip randomized clinical trial. JAMA. 2021;325(3):244–53. https://doi.org/10.1001/jama.2020.23522

Zi W, Qiu Z, Li F, et al. Effect of endovascular treatment alone vs intravenous alteplase plus endovascular treatment on functional independence in patients with acute ischemic stroke: the devt randomized clinical trial. JAMA. 2021;325(3):234–43. https://doi.org/10.1001/jama.2020.23523

Shtam TA, Kovalev RA, Varfolomeeva EY, et al. Exosomes are natural carriers of exogenous siRNA to human cells in vitro. Cell Commun Signal. 2013;11:88. https://doi.org/10.1186/1478-811X-11-88

Budnik V, Ruiz-Cañada C, Wendler F. Extracellular vesicles round off communication in the nervous system. Nat Rev Neurosci. 2016;17(3):160–72. https://doi.org/10.1038/nrn.2015.29

De Abreu RC, Fernandes H, da Costa Martins PA, et al. Native and bioengineered extracellular vesicles for cardiovascular therapeutics. Nat Rev Cardiol. 2020;17(11):685–97. https://doi.org/10.1038/s41569-020-0389-5

Ferrantelli F, Chiozzini C, Leone P, et al. Engineered Extracellular Vesicles/Exosomes as a New Tool against Neurodegenerative Diseases. Pharmaceutics. 2020;12(6):529. https://doi.org/10.3390/pharmaceutics12060529

Rufino-Ramos D, Albuquerque PR, Carmona V, et al. Extracellular vesicles: novel promising delivery systems for therapy of brain diseases. J Control Release. 2017;262:247–58. https://doi.org/10.1016/j.jconrel.2017.07.001

Gratpain V, Mwema A, Labrak Y, et al. Extracellular vesicles for the treatment of central nervous system diseases. Adv Drug Deliv Rev. 2021;174:535–52. https://doi.org/10.1016/j.addr.2021.05.006

Khan H, Pan JJ, Li Y, et al. Native and Bioengineered Exosomes for ischemic stroke therapy. Front Cell Dev Biol. 2021;9:619565. https://doi.org/10.3389/fcell.2021.619565

Cun Y, Jin Y, Wu D, et al. Exosome in crosstalk between inflammation and angiogenesis: a potential therapeutic strategy for stroke. Mediators Inflamm. 2022;2022:7006281. https://doi.org/10.1155/2022/7006281

Tian T, Cao L, He C, et al. Targeted delivery of neural progenitor cell-derived extracellular vesicles for anti-inflammation after cerebral ischemia. Theranostics. 2021;11(13):6507–21. https://doi.org/10.7150/thno.56367

Zhang Y, Liu J, Su M, et al. Exosomal microRNA-22-3p alleviates cerebral ischemic injury by modulating KDM6B/BMP2/BMF axis. Stem Cell Res Ther. 2021;12(1):111. https://doi.org/10.1186/s13287-020-02091-x

Mathiyalagan P, Liang Y, Kim D, et al. Angiogenic mechanisms of human CD34 + stem cell exosomes in the repair of ischemic hindlimb. Circ Res. 2017;120(9):1466–76.

Xu X, Zhang H, Li J, et al. Combination of EPC-EXs and NPC-EXs with miR-126 and miR-210 overexpression produces better therapeutic effects on ischemic stroke by protecting neurons through the Nox2/ROS and BDNF/TrkB pathways. Exp Neurol. 2023;359:114235. https://doi.org/10.1016/j.expneurol.2022.114235

Villa A, Garofalo M, Crescenti D, et al. Transplantation of autologous extracellular vesicles for cancer-specific targeting. Theranostics. 2021;11(5):2034–47. https://doi.org/10.7150/thno.51344

Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. https://doi.org/10.1371/journal.pmed.1000097

Macleod MR, O’Collins T, Howells DW, et al. Pooling of animal experimental data reveals influence of study design and publication bias. Stroke. 2004;35(5):1203–8. https://doi.org/10.1161/01.STR.0000125719.25853.20

Deng Y, Chen D, Gao F, et al. Exosomes derived from microRNA-138-5p-overexpressing bone marrow-derived mesenchymal stem cells confer neuroprotection to astrocytes following ischemic stroke via inhibition of LCN2. J Biol Eng. 2019;13:71. https://doi.org/10.1186/s13036-019-0193-0

Guo L, Pan J, Li F, et al. A novel brain targeted plasma exosomes enhance the neuroprotective efficacy of edaravone in ischemic stroke. IET Nanobiotechnol. 2021;15(1):107–16. https://doi.org/10.1049/nbt2.12003

Guo L, Huang Z, Huang L, et al. Surface-modified engineered exosomes attenuated cerebral ischemia/reperfusion injury by targeting the delivery of quercetin towards impaired neurons. J Nanobiotechnol. 2021;19(1):141. https://doi.org/10.1186/s12951-021-00879-4

Huang Z, Guo L, Huang L, et al. Baicalin-loaded macrophage-derived exosomes ameliorate ischemic brain injury via the antioxidative pathway. Mater Sci Eng C Mater Biol Appl. 2021;126:112123. https://doi.org/10.1016/j.msec.2021.112123

Jiang Y, Wang R, Wang C, et al. Brain microenvironment responsive and pro-angiogenic extracellular vesicle-hydrogel for promoting Neurobehavioral Recovery in type 2 Diabetic mice after stroke. Adv Healthc Mater. 2022;11(22):e2201150. https://doi.org/10.1002/adhm.202201150

Kim M, Kim G, Hwang DW, et al. Delivery of high mobility Group Box-1 siRNA using brain-targeting exosomes for ischemic stroke therapy. J Biomed Nanotechnol. 2019;15(12):2401–12. https://doi.org/10.1166/jbn.2019.2866

Kim HY, Kim TJ, Kang L, et al. Mesenchymal stem cell-derived magnetic extracellular nanovesicles for targeting and treatment of ischemic stroke. Biomaterials. 2020;243:119942. https://doi.org/10.1016/j.biomaterials.2020.119942

Kim M, Lee Y, Lee M. Hypoxia-specific anti-RAGE exosomes for nose-to-brain delivery of anti-miR-181a oligonucleotide in an ischemic stroke model. Nanoscale. 2021;13(33):14166–78. https://doi.org/10.1039/d0nr07516g

Lee JY, Kim E, Choi SM, et al. Microvesicles from brain-extract-treated mesenchymal stem cells improve neurological functions in a rat model of ischemic stroke. Sci Rep. 2016;6:33038. https://doi.org/10.1038/srep33038

Li F, Zhao L, Shi Y, et al. Edaravone-Loaded macrophage-derived Exosomes Enhance Neuroprotection in the Rat Permanent Middle cerebral artery occlusion model of stroke. Mol Pharm. 2020;17(9):3192–201. https://doi.org/10.1021/acs.molpharmaceut.0c00245

Liu W, Su C, Qi Y, et al. Brain-targeted heptapeptide-loaded exosomes attenuated ischemia-reperfusion injury by promoting the transfer of healthy mitochondria from astrocytes to neurons. J Nanobiotechnol. 2022;20(1):242. https://doi.org/10.1186/s12951-022-01425-6

Pan Q, Kuang X, Cai S, et al. Mir-132-3p priming enhances the effects of mesenchymal stromal cell-derived exosomes on ameliorating brain ischemic injury. Stem Cell Res Ther. 2020;11(1):260. https://doi.org/10.1186/s13287-020-01761-0

Shi X, Zhong X, Deng L, et al. Mesenchymal stem cell-derived extracellular vesicle-enclosed microRNA-93 prevents hypoxic-ischemic brain damage in rats. Neuroscience. 2022;500:12–25. https://doi.org/10.1016/j.neuroscience.2022.06.037

Wang J, Chen S, Zhang W, et al. Exosomes from miRNA-126-modified endothelial progenitor cells alleviate brain injury and promote functional recovery after stroke. CNS Neurosci Ther. 2020;26(12):1255–65. https://doi.org/10.1111/cns.13455

Wei R, Zhang L, Hu W, et al. Zeb2/Axin2-Enriched BMSC-Derived Exosomes promote post-stroke functional recovery by enhancing neurogenesis and neural plasticity. J Mol Neurosci. 2022;72(1):69–81. https://doi.org/10.1007/s12031-021-01887-7

Xin H, Katakowski M, Wang F, et al. MicroRNA cluster mir-17-92 cluster in Exosomes Enhance Neuroplasticity and functional recovery after stroke in rats. Stroke. 2017;48(3):747–53. https://doi.org/10.1161/STROKEAHA.116.015204

Xin H, Liu Z, Buller B, et al. MiR-17-92 enriched exosomes derived from multipotent mesenchymal stromal cells enhance axon-myelin remodeling and motor electrophysiological recovery after stroke. J Cereb Blood Flow Metab. 2021;41(5):1131–44. https://doi.org/10.1177/0271678X20950489

Xu L, Ji H, Jiang Y, et al. Exosomes Derived from CircAkap7-Modified adipose-derived mesenchymal stem cells protect against cerebral ischemic Injury. Front Cell Dev Biol. 2020;8:569977. https://doi.org/10.3389/fcell.2020.569977

Yang HC, Zhang M, Wu R, et al. C-C chemokine receptor type 2-overexpressing exosomes alleviated experimental post-stroke cognitive impairment by enhancing microglia/macrophage M2 polarization. World J Stem Cells. 2020;12(2):152–67. https://doi.org/10.4252/wjsc.v12.i2.152

Yang L, Han B, Zhang Z, et al. Extracellular vesicle-mediated delivery of circular RNA SCMH1 promotes functional recovery in Rodent and Nonhuman Primate Ischemic Stroke Models. Circulation. 2020;142(6):556–74. https://doi.org/10.1161/CIRCULATIONAHA.120.045765

Yang H, Chen J. Bone marrow mesenchymal stem cell-derived exosomes carrying long noncoding RNA ZFAS1 alleviate oxidative stress and inflammation in ischemic stroke by inhibiting microRNA-15a-5p. Metab Brain Dis. 2022;37(7):2545–57. https://doi.org/10.1007/s11011-022-00997-4

Yoon EJ, Choi Y, Kim TM, et al. The neuroprotective Effects of Exosomes Derived from TSG101-Overexpressing human neural stem cells in a stroke model. Int J Mol Sci. 2022;23(17):9532. https://doi.org/10.3390/ijms23179532

Zhang G, Zhu Z, Wang H, et al. Exosomes derived from human neural stem cells stimulated by interferon gamma improve therapeutic ability in ischemic stroke model. J Adv Res. 2020;24:435–45. https://doi.org/10.1016/j.jare.2020.05.017

Zhao Y, Gan Y, Xu G, et al. Exosomes from MSCs overexpressing microRNA-223-3p attenuate cerebral ischemia through inhibiting microglial M1 polarization mediated inflammation. Life Sci. 2020;260:118403. https://doi.org/10.1016/j.lfs.2020.118403

Zhou X, Deng X, Liu M, et al. Intranasal delivery of BDNF-loaded small extracellular vesicles for cerebral ischemia therapy. J Control Release. 2023;357:1–19. https://doi.org/10.1016/j.jconrel.2023.03.033. Epub 2023 Mar 28. PMID: 36958402.

Zhou H, Zhou J, Teng H, Yang H, Qiu J, Li X. MiR-145 enriched exosomes derived from bone marrow-derived mesenchymal stem cells protects against cerebral ischemia-reperfusion injury through downregulation of FOXO1. Biochem Biophys Res Commun. 2022;632:92–9. https://doi.org/10.1016/j.bbrc.2022.09.089

Zhu ZH, Jia F, Ahmed W, et al. Neural stem cell-derived exosome as a nano-sized carrier for BDNF delivery to a rat model of ischemic stroke. Neural Regen Res. 2023;18(2):404–9. https://doi.org/10.4103/1673-5374.346466

Spellicy SE, Stice SL. Tissue and stem cell sourced Extracellular Vesicle Communications with Microglia. Stem Cell Rev Rep. 2021;17(2):357–68. https://doi.org/10.1007/s12015-020-10011-y

Tariq MB, Lee J, McCullough LD. Sex differences in the inflammatory response to stroke. Semin Immunopathol. 2022. https://doi.org/10.1007/s00281-022-00969-x

Yang C, Yuan F, Shao W, et al. Protective role of exosomes derived from regulatory T cells against inflammation and apoptosis of BV-2 microglia under oxygen-glucose deprivation/reperfusion challenge. Genet Mol Biol. 2022;45(4):e20220119. https://doi.org/10.1590/1678-4685-GMB-2022-0119

Aimaletdinov AM, Gomzikova MO. Tracking of Extracellular vesicles’ biodistribution: New Methods and Approaches. Int J Mol Sci. 2022;23(19):11312. https://doi.org/10.3390/ijms231911312

Toh WS, Zhang B, Lai RC, et al. Immune regulatory targets of mesenchymal stromal cell exosomes/small extracellular vesicles in tissue regeneration. Cytotherapy. 2018;20(12):1419–26. https://doi.org/10.1016/j.jcyt.2018.09.008

Emam SE, Elsadek NE, Abu Lila AS, et al. Anti-PEG IgM production and accelerated blood clearance phenomenon after the administration of PEGylated exosomes in mice. J Control Release. 2021;334:327–34. https://doi.org/10.1016/j.jconrel.2021.05.001

Liu X, Wu C, Zhang Y, et al. Hyaluronan-based hydrogel integrating exosomes for traumatic brain injury repair by promoting angiogenesis and neurogenesis. Carbohydr Polym. 2023;306:120578. https://doi.org/10.1016/j.carbpol.2023.120578

Tian T, Zhang HX, He CP, et al. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomaterials. 2018;150:137–49. https://doi.org/10.1016/j.biomaterials

Alvarez-Erviti L, Seow Y, Yin H, et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011;29(4):341–5. https://doi.org/10.1038/nbt.1807