Engagement of Arginine Finger to ATP Triggers Large Conformational Changes in NtrC1 AAA+ ATPase for Remodeling Bacterial RNA Polymerase
Tài liệu tham khảo
Adams, 2010, PHENIX: a comprehensive Python-based system for macromolecular structure solution, Acta Crystallogr. D Biol. Crystallogr., D66, 213, 10.1107/S0907444909052925
Batchelor, 2009, Receiver domains control the active-state stoichiometry of Aquifex aeolicus σ54 activator NtrC4, as revealed by electrospray ionization mass spectrometry, J. Mol. Biol., 393, 634, 10.1016/j.jmb.2009.08.033
Bose, 2008, Organization of an activator-bound RNA polymerase holoenzyme, Mol. Cell, 32, 337, 10.1016/j.molcel.2008.09.015
Brunger, 1998, Crystallography and NMR system (CNS): a new software system for macromolecular structure determination, Acta Crystallogr. D Biol. Crystallogr., D54, 905, 10.1107/S0907444998003254
Chen, 2009, KiNG (Kinmage, Next Generation): a versatile interactive molecular and scientific visualization program, Protein Sci., 18, 2403, 10.1002/pro.250
Chen, 2007, ATP ground- and transition states of bacterial enhancer binding AAA+ ATPases support complex formation with their target protein, σ54, Structure, 15, 429, 10.1016/j.str.2007.02.007
Chen, 2009, ADPase activity of recombinantly expressed thermotolerant ATPases may be caused by co-purification of adenylate kinase of Escherichia coli, FEBS J., 276, 807, 10.1111/j.1742-4658.2008.06825.x
Davies, 2008, Improved structures of full-length p97, an AAA ATPase: Implications for mechanisms of nucleotide-dependent conformational change, Structure, 16, 715, 10.1016/j.str.2008.02.010
Davis, 2007, MolProbity: all-atom contacts and structure validation for proteins and nucleic acids, Nucleic Acids Res., 35, W375, 10.1093/nar/gkm216
De Carlo, 2006, The structural basis for regulated assembly and function of the transcriptional activator NtrC, Genes Dev., 20, 1485, 10.1101/gad.1418306
Dekker, 2004, A perturbation-based method for calculating explicit likelihood of evolutionary co-variance in multiple sequence alignments, Bioinformatics, 20, 1565, 10.1093/bioinformatics/bth128
Doucleff, 2005, Negative regulation of AAA+ ATPase assembly by two component receiver domains: a transcription activation mechanism that is conserved in mesophilic and extremely hyperthermophilic bacteria, J. Mol. Biol., 353, 242, 10.1016/j.jmb.2005.08.003
Emsley, 2004, Coot: model-building tools for molecular graphics, Acta Crystallogr. D Biol. Crystallogr., D60, 2126, 10.1107/S0907444904019158
Fischetti, 2004, The BioCAT undulator beamline 18ID: a facility for biological non-crystalline diffraction and X-ray absorption spectroscopy at the Advanced Photon Source, J. Synchrotron Radiat., 11, 399, 10.1107/S0909049504016760
Hayward, 1998, Systemic analysis of domain motions in proteins from conformational change; new results on citrate synthase and T4 lysozyme, Proteins, 30, 144, 10.1002/(SICI)1097-0134(19980201)30:2<144::AID-PROT4>3.0.CO;2-N
Joly, 2010, Engineered interfaces of an AAA+ ATPase reveal a new nucleotide-dependent coordination mechanism, J. Biol. Chem., 285, 15178, 10.1074/jbc.M110.103150
Joly, 2008, An intramolecular route for coupling ATPase activity in AAA+ proteins for transcription activation, J. Biol. Chem., 283, 13725, 10.1074/jbc.M800801200
Joly, 2006, Heterogeneous nucleotide occupancy stimulates functionality of phage shock protein F, an AAA+ transcriptional activator, J. Biol. Chem., 281, 34997, 10.1074/jbc.M606628200
Keegan, 2007, Automated search-model discovery and preparation for structure solution by molecular replacement, Acta Crystallogr. D Biol. Crystallogr., D63, 447, 10.1107/S0907444907002661
Kozin, 2001, Automated matching of high- and low-resolution structural models, J. Appl. Crystallogr., 34, 33, 10.1107/S0021889800014126
Lee, 2003, Regulation of the transcriptional activator NtrC1: structural studies of the regulatory and AAA+ ATPase domains, Genes Dev., 17, 2552, 10.1101/gad.1125603
Mosca, 2008, Alignment of protein structures in the presence of domain motions, BMC Bioinformatics, 9, 352, 10.1186/1471-2105-9-352
Mosca, 2008, RAPIDO: a web server for the alignment of protein structures in the presence of conformational changes, Nucleic Acids Res., 36, W42, 10.1093/nar/gkn197
Neuwald, 1999, AAA+: A class of chaperonin-like ATPases associated with the assembly, operation, and disassembly of protein complexes, Genome Res., 9, 27, 10.1101/gr.9.1.27
Radermacher, 1987, Three-dimensional reconstruction from a single-exposure, random conical tilt series applied to the 50S ribosomal subunit of Escherichia coli, J. Microsc., 146, 113, 10.1111/j.1365-2818.1987.tb01333.x
Rappas, 2005, Structural insights into the activity of enhancer-binding proteins, Science, 307, 1972, 10.1126/science.1105932
Rappas, 2006, Structural basis of the nucleotide driven conformational changes in the AAA+ domain of the transcription factor PspF, J. Mol. Biol., 357, 481, 10.1016/j.jmb.2005.12.052
Rappas, 2007, Bacterial enhancer-binding proteins: unlocking σ54-dependent gene transcription, Curr. Opin. Struct. Biol., 17, 110, 10.1016/j.sbi.2006.11.002
Sallai, 2005, Crystal structure of the central and C-terminal domain of the sigma(54)-activator ZraR, J. Struct. Biol., 151, 160, 10.1016/j.jsb.2005.05.006
Schumacher, 2008, Mechanism of homotropic control to coordinate hydrolysis in a hexameric AAA+ ring ATPase, J. Mol. Biol., 381, 1, 10.1016/j.jmb.2008.05.075
Terwilliger, 2000, Maximum likelihood density modification, Acta Crystallogr. D Biol. Crystallogr., D56, 965, 10.1107/S0907444900005072
Theobald, 2008, Accurate structural correlations from maximum likelihood superpositions, PLoS Comput. Biol., 4, e43, 10.1371/journal.pcbi.0040043
Thomsen, 2008, Structural framework for considering microbial protein- and nucleic acid-dependent motor ATPases, Mol. Microbiol., 69, 1071, 10.1111/j.1365-2958.2008.06364.x
Tucker, 2007, The AAA+ superfamily—a myriad of motions, Curr. Opin. Struct. Biol., 17, 641, 10.1016/j.sbi.2007.09.012
Xu, 2004, Purification and characterization of the AAA+ domain of Sinorhizobium meliloti DctD, a σ54-dependent transcriptional activator, J. Bacteriol., 186, 3499, 10.1128/JB.186.11.3499-3507.2004
Zhang, 2008, The ‘glutamate switch’ provides a link between ATPase activity and ligand binding in AAA+ proteins, Nat. Struct. Mol. Biol., 15, 1223, 10.1038/nsmb.1501