Energy transfer analysis and realization of cool to warm white light in Dy3+/Sm3+/Er3+ triply doped multicomponent borosilicate glass for white light generation

Luminescence - Tập 36 Số 6 - Trang 1422-1434 - 2021
Adon Jose1, T. Krishnapriya1, Twinkle Anna Jose1, A. C. Saritha1, Cyriac Joseph1, P.R. Biju1
1School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam, Kerala, India

Tóm tắt

AbstractA series of Dy3+/Sm3+/Er3+ triply doped multicomponent borosilicate glasses (DSE) was synthesized using varying Er3+ ions concentrations through a conventional melt quenching technique. The influence of triple doping on the optical characteristics of the prepared glass was evaluated to estimate the possibility of achieving white light emission through optical absorption, photoluminescence excitation (PLE), and emission (PL) measurements. Based on the PLE and PL spectral profiles, the presence of energy transfer processes between Dy3+, Sm3+, and Er3+ was confirmed. Furthermore, for Dy3+/Sm3+/Er3+ triply doped glass, an enhancement in Er3+ green luminescence and a noticeable decrease in Dy3+ and Sm3+ emissions were detected with the increase in Er3+concentration. The nature of energy transfer in DSE glass was investigated through Dexter's energy transfer mechanisms and the obtained result suggested that a dipole–dipole interaction was responsible for the dominant Sm3+ to Dy3+ and Dy3+ to Er3+ energy transfer processes. The precise characteristic colours that emanated from the as‐prepared samples were evaluated using Commission Internationale de l'Éclairage co‐ordinates and correlated colour temperature values and suggested its suitability for white light emission. The quantum efficiency of the prepared glass was determined experimentally. The aforementioned results recommend that the Dy3+/Sm3+/Er3+ triply doped multicomponent borosilicate glass irradiated with ultraviolet light sources might be useful for the generation of cool/warm white light‐emitting applications.

Từ khóa


Tài liệu tham khảo

10.1016/j.saa.2019.05.002

10.1016/j.jlumin.2020.117543

10.1016/j.jnoncrysol.2018.03.024

10.1016/j.jnoncrysol.2019.03.025

10.1007/s11664-019-07198-3

10.1016/j.jnoncrysol.2016.02.010

10.1016/j.jlumin.2018.12.002

Lakshminarayana G., 2019, J. Non‐Cryst. Solids, 503, 306

10.1016/j.matchemphys.2020.122862

10.1016/j.saa.2010.04.033

10.1016/j.jnoncrysol.2014.08.054

10.1007/s00339-010-5966-8

10.1007/s10854-020-03909-3

10.1063/1.1669893

10.1016/j.jlumin.2018.10.112

10.1016/j.saa.2019.117755

10.1016/j.jlumin.2018.10.041

10.1016/j.matchemphys.2021.124223

10.1007/s10854-018-8638-7

10.1016/j.physb.2017.11.070

10.1016/j.jlumin.2017.09.009

10.1016/j.ceramint.2017.07.174

10.1007/s10853-017-0863-6

Zhang F., 2008, J. Nanosci. Nanotechnol., 70, 3

10.1016/j.jnoncrysol.2011.11.011

10.1016/j.jallcom.2018.02.211

10.1016/j.jlumin.2020.117166

10.1016/j.optmat.2018.12.028

10.1016/j.ceramint.2020.11.022

10.1016/j.jlumin.2017.02.049

10.1016/j.optmat.2016.11.033

10.1016/j.jnoncrysol.2021.120775

10.1016/j.jlumin.2021.118105

10.1007/s10854-020-04746-0

10.1016/j.jlumin.2015.08.063

10.1016/j.mseb.2008.11.024