Tiềm năng sản xuất năng lượng từ chất thải rắn đô thị và mô hình thống kê: trường hợp của thị trấn Yirgalem, Ethiopia

Yirdaw Meride Teshome1,2, Nigus Gabbiye Habtu3, Mikias Biazen Molla4, Mihret Dananto Ulsido5,6
1College of Agriculture and Environmental Science, University of Gondar, Gondar, Ethiopia
2Climate Change and Bioenergy Development, Wondo Genet College of Forestry and Natural Resources, Hawassa University, Hawassa, Ethiopia
3Chemical, Environmental and Process Engineering, Institute of Technology, Bahir Dar University, Bahir Dar, Ethiopia
4GIS-Remote Sensing and Environmental Management, Wondo Genet College of Forestry and Natural Resources, Hawassa University, Hawassa, Ethiopia
5Center for Ethiopian Rift Valley Studies (CERVaS), Hawassa University, Hawassa, Ethiopia
6Water Supply and Environmental Engineering Department, Institute of Technology, Hawassa University, Hawassa, Ethiopia

Tóm tắt

Một trong những vấn đề quan trọng mà các nước đang phát triển phải đối mặt là việc xử lý không đúng cách chất thải rắn phát sinh từ hoạt động của con người. Việc tìm kiếm các nguồn tài nguyên chất thải rắn làm nguồn năng lượng bền vững và giá cả phải chăng là rất quan trọng vì các nguồn năng lượng hiện có là hữu hạn và tốn kém. Nghiên cứu này nhằm đánh giá tiềm năng sản xuất năng lượng và xây dựng các mô hình năng lượng cụ thể theo địa điểm. Việc lấy mẫu được thực hiện trong các mùa khác nhau tại nhiều nguồn phát sinh chất thải khác nhau, bao gồm dân cư, thương mại, cơ quan, y tế và quét dọn đường phố. Hướng dẫn của Tiêu chuẩn Mỹ về Thử nghiệm và Vật liệu được sử dụng để lấy mẫu đại diện cho nghiên cứu các đặc tính vật lý và hóa học. Hàm lượng chất dễ bay hơi của chất thải rắn tổng hợp là 70,41%, tiếp theo là 16,24% carbon cố định và 13,35% tro theo cơ sở khô. Tương tự, một cuộc điều tra về phần hữu cơ hỗn hợp của chất thải rắn cho thấy nó chứa 32,46% carbon, 4,52% hydro, 46,03% oxy, 1,04% nitrogen và 0,17% lưu huỳnh. Các giá trị dự đoán của mô hình về giá trị nhiệt cao và thấp trong chất thải rắn tổng hợp lần lượt là 4731,96 kcal/kg và 4148 kcal/kg. Dựa trên lượng chất thải rắn khô là 4530,42 tấn mỗi năm, chất thải rắn đô thị (MSW) có tiềm năng năng lượng khoảng 21.798,98 MWh, tương đương 2,49 MW điện. Hàm lượng chất dễ bay hơi và carbon cố định theo cơ sở khô là cơ sở để phát triển một mô hình mới dự đoán hàm lượng năng lượng của chất thải rắn đô thị. Do đó, nghiên cứu này cũng sẽ đóng góp vào vệ sinh môi trường và dự báo lượng năng lượng trong dòng chất thải rắn đô thị.

Từ khóa


Tài liệu tham khảo

Melaku TA (2019) Energy recovery from solid waste for Adama City Ethiopia. Int J Energy Environ Sci 4:35. https://doi.org/10.11648/j.ijees.20190403.11 Ogunjuyigbe A, Ayodele T, Alao M (2017) Electricity generation from municipal solid waste in some selected cities of Nigeria: an assessment of feasibility, potential and technologies. Renew Sustain Energy Rev 80:149–162. https://doi.org/10.1016/j.rser.2017.05.177 Amoo O, Fagbenle R (2013) Renewable municipal solid waste pathways for energy generation and sustainable development in the Nigerian context. Int J Energy Environ Eng 4:42. https://doi.org/10.1186/2251-6832-4-42 Ayub S, Khan A (2014) Characterization and energy generation of Sharda Landfill at Agra. Int J Eng Res Appl 4:12–20 Makarichi L, Kan R, Jutidamrongphan W, Techato K (2019) Suitability of municipal solid waste in African cities for thermochemical waste-to-energy conversion: the case of Harare Metropolitan City, Zimbabwe. Waste Manag Res 37:83–94. https://doi.org/10.1177/0734242X18804029 Amare F (2015) Solid waste management in Durame Town: practice and challenges. Addis Ababa University, Ethiopia Omer A (2012) Biomass energy resources utilization and waste management. Agric Sci 03:124–145. https://doi.org/10.4236/as.2012.31016 Yap H, Nixon J (2015) A multi-criteria analysis of options for energy recovery from municipal solid waste in India and the UK. Waste Manag 46:265–277. https://doi.org/10.1016/j.wasman.2015.08.002 Oumarou M, Shodiya S, Ngala G, Aviara N (2016) Statistical modeling of the energy content of municipal solid wastes in Northern Nigeria. Arid Zone J Eng Technol Environ 12:103–109 Bayu A, Amibo T, Akuma D (2020) Conversion of degradable municipal solid waste into fuel briquette: case of Jimma Town. Iran J Energy Environ 11:. https://doi.org/10.5829/IJEE.2020.11.02.05 Korai M, Mahar R, Uqaili M (2016) Estimation of energy potential from organic fractions of municipal solid waste by using empirical models at Hyderabad, Pakistan. Mehran Univ Res J Eng Technol 35:9 Sheng C, Azevedo J (2005) Estimating the higher heating value of biomass fuels from basic analysis data. Biomass Bioenergy 28:499–507. https://doi.org/10.1016/j.biombioe.2004.11.008 Amen R, Hameed J, Albashar G et al (2021) Modeling the higher heating value of municipal solid waste for assessment of waste-to-energy potential: a sustainable case study. J Clean Prod 287:125575. https://doi.org/10.1016/j.jclepro.2020.125575 Adeleke O, Akinlabi S, Jen T, Dunmade I (2021) Evaluation and prediction of energy content of municipal solid waste: a review IOP. Conf Ser Mater Sci Eng 1107:012097. https://doi.org/10.1088/1757-899X/1107/1/012097 Yusuf E, Fiseha F, Dulla D, kassahun G (2018) Utilization of kangaroo mother care and influencing factors among mothers and care takers of preterm/low birth weight babies in Yirgalem Town, Southern. Ethiopia Divers Equal Health Care 15: 87-92. https://doi.org/10.21767/2049-5471.1000160 Central Statistical Agency (2013) Population projection 2007- 2037 produced in 2012.pdf. Central Statistical Agency, Addis Ababa, Ethiopia Sachi P, Mensah E (2020) Household characteristics and waste generation paradox: what influences solid waste generation in Bolgatanga. Int J Environ Waste Manag 26:212–233 Osei-Mensah P, Adjaottor A, Owusu-Boateng G (2014) Characterization of solid waste in the Atwima-Nwabiagya district of the Ashanti Region, Kumasi-Ghana. Int J Waste Manag Technol 2:1–14 Durogbitan A (2019) Evaluation of impact of solid wastes and its potential as a source of renewable energy: a case study from Minna and his Environs, Nigeria. Acta Sci Agric 3:145–152 Ryu C (2010) Potential of municipal solid waste for renewable energy production and reduction of greenhouse gas emissions in South Korea. J Air Waste Manag Assoc 60:176–183. https://doi.org/10.3155/1047-3289.60.2.176 Hla S, Roberts D (2015) Characterization of chemical composition and energy content of green waste and municipal solid waste from Greater Brisbane, Australia. Waste Manag 41:12–19. https://doi.org/10.1016/j.wasman.2015.03.039 Garces D, Diaz E, Sastre H et al (2016) Evaluation of the potential of different high calorific waste fractions for the preparation of solid recovered fuels. Waste Manag 47:164–173. https://doi.org/10.1016/j.wasman.2015.08.029 Kathiravale S (2003) Modeling the heating value of municipal solid waste. Fuel 82:1119–1125. https://doi.org/10.1016/S0016-2361(03)00009-7 Khan M, Abu-Ghararah Z (1991) New approach for estimating energy content of municipal solid waste. J Environ Eng 117:376–380. https://doi.org/10.1061/(ASCE)0733-9372(1991)117:3(376) Kuleape R, Cobbina S, Dampare S et al (2014) Assessment of the energy recovery potentials of solid waste generated in Akosombo, Ghana. Afr J Environ Sci Technol 8:297–305. https://doi.org/10.5897/AJEST2014.1663 Johari A, Hashim H, Mat R et al (2012) Generalization, formulation and heat contents of simulated MSW with high moisture content. J Eng Sci Technol 7:701–710 Gutierrez-Gomez A, Gallego A, Palacios-Bereche R et al (2021) Energy recovery potential from Brazilian municipal solid waste via combustion process based on its thermochemical characterization. J Clean Prod 293:126145. https://doi.org/10.1016/j.jclepro.2021.126145 Suberu M, Mokhtar A, Bashir N (2012) Renewable power generation opportunity from municipal solid waste: a case study of Lagos Metropolis (Nigeria). J Energy Technol Policy 2:1–15 Liu J, Paode R, Holsen T (1996) Modeling the energy content of municipal solid waste using multiple regression analysis. J Air Waste Manag Assoc 46:650–656. https://doi.org/10.1080/10473289.1996.10467499 Chang Y, Lin C, Chyan J et al (2007) Multiple regression models for the lower heating value of municipal solid waste in Taiwan. J Environ Manage 85:891–899. https://doi.org/10.1016/j.jenvman.2006.10.025 Assefa M, Muktar M (2017) Solid waste generation rate and characterization study for Laga Tafo Laga Dadi Town, Oromia, Ethiopia. Int J Environ Prot Policy 5:84. https://doi.org/10.11648/j.ijepp.20170506.11 Amaya J, Hidalgo J, Jervis F, Moreira C (2019) Influence of socio-economic factors on household solid waste generation of the city of Guayaquil, Ecuador. In: Proceedings of the 17th LACCEI International Multi-Conference for Engineering, Education, and Technology. Noufal M, Yuanyuan L, Maalla Z, Adipah S (2020) Determinants of household solid waste generation and composition in Homs City, Syria. J Environ Public Health 2020:1–15. https://doi.org/10.1155/2020/7460356 Miezah K, Obiri-Danso K, Kadar Z et al (2015) Municipal solid waste characterization and quantification as a measure towards effective waste management in Ghana. Waste Manag 46:15–27. https://doi.org/10.1016/j.wasman.2015.09.009 Mmereki D, Baldwin A, Li B (2016) A comparative analysis of solid waste management in developed, developing and lesser developed countries. Environ Technol Rev 5:120–141. https://doi.org/10.1080/21622515.2016.1259357 Fobil J, Carboo D, Armah N (2005) Evaluation of municipal solid wastes for utilization in energy production in developing countries. Int J Environ Technol Manag 5:76. https://doi.org/10.1504/IJETM.2005.006508 Omari A (2015) Characterization of municipal solid waste for energy recovery. J Multidiscip Eng Sci Technol 2:1–9 Korai M, Mahar R, Uqaili M (2017) The feasibility of municipal solid waste for energy generation and its existing management practices in Pakistan. Renew Sustain Energy Rev 72:338–353. https://doi.org/10.1016/j.rser.2017.01.051 Fetene Y, Addis T, Beyene A, Kloos H (2018) Valorization of solid waste as key opportunity for green city development in the growing urban areas of the developing world. J Environ Chem Eng 6:7144–7151. https://doi.org/10.1016/j.jece.2018.11.023 Pasek A, Gultom K, Suwono A (2013) Feasibility of recovering energy from municipal solid waste to generate electricity. J Eng Technol Sci 45:241–256. https://doi.org/10.5614/j.eng.technol.sci.2013.45.3.3 Tsunatu D, Tickson T, Sam K, Namo J (2015) Municipal solid waste as alternative source of energy generation: a case study of Jalingo Metropolis – Taraba State. Int J Eng Technol 5:1–10 Ozyuguran A, Yaman S, Kucukbayrak S (2018) Prediction of calorific value of biomass based on elemental analysis. Int Adv Res Eng J 2:254–260 Tembe E, Otache P, Ekhuemelo D (2014) Density, shatter index, and combustion properties of briquettes produced from groundnut shells, rice husks and saw dust of Daniellia oliveri. J Appl Biosci 82:7372. https://doi.org/10.4314/jab.v82i1.7 Tayework A (2018) Evaluation of energy potential from solid medical waste at Tikur Anbessa Specialized Hospital. Addis Ababa University, Ethiopia Gebreyesus H (2020) Investigation of the type and volume of household municipal solid waste and measurement of its total heat: the case of Adigrat Town. Res J Eng Technol 11:187–196. https://doi.org/10.5958/2321-581X.2020.00029.X Chakma S, Vaishya R, Yadav A (2016) Modeling chemical compositions of municipal solid waste. Environ Geotech 3:65–77. https://doi.org/10.1680/envgeo.13.00082 Abubakar A, Barnabas M, Tanko B (2018) The physico-chemical composition and energy recovery potentials of municipal solid waste generated in Numan Town, North-Eastern Nigeria. Energy Power Eng 10:475–485. https://doi.org/10.4236/epe.2018.1011030 Boumanchar I, Chhiti Y, M’hamdi Alaoui F, et al (2019) Municipal solid waste higher heating value prediction from ultimate analysis using multiple regression and genetic programming techniques. Waste Manag Res J Sustain Circ Econ 37:578–589. https://doi.org/10.1177/0734242X18816797 Amber I, Kulla D, Gukop N (2012) Generation, characteristics and energy potential of solid municipal waste in Nigeria. J Energy South Afr 23:5 Fetene Y (2021) Characterization and heating value prediction of municipal solid waste. Int J Environ Agric Res 7:10 Ibikunle R, Titiladunayo F, Akinnuli B et al (2019) Estimation of power generation from municipal solid wastes: a case study of Ilorin metropolis, Nigeria. Energy Rep 5:126–135. https://doi.org/10.1016/j.egyr.2019.01.005 Gunamantha M (2016) Prediction of higher heating value bioorganic fraction of municipal solid waste from proximate analysis data. Int J Eng Res 5:7 Shiferaw G (2014) Energy potential of municipal solid waste for incineration: Reppi Open Dump Site. Addis Ababa University, Addis Ababa Rand T, Haukohl J, Marxen U (2000) Municipal solid waste incineration: requirements for a successful project. World Bank, Washington, D.C. Rominiyi O, Fapetu O, Owolabi J, Adaramola B (2017) Determination of energy content of the municipal solid waste of Ado – Ekiti Metropolis, Southwest, Nigeria. Curr J Appl Sci Technol 23:1–11. https://doi.org/10.9734/CJAST/2017/32340 Ghinea C, Dragoi E, Comaniţa E et al (2016) Forecasting municipal solid waste generation using prognostic tools and regression analysis. J Environ Manage 182:80–93. https://doi.org/10.1016/j.jenvman.2016.07.026 Cordero T, Marquez F, Rodriguez-Mirasol J, Rodriguez J (2001) Predicting heating values of lignocelluloses and carbonaceous materials from proximate analysis. Fuel 80:1567–1571. https://doi.org/10.1016/S0016-2361(01)00034-5 Demirbas A (1997) Calculation of higher heating values of biomass fuels. Fuel ELSEVIER 76:431–43