Energy optimal 3D flight path planning for unmanned aerial vehicle in urban environments
Tóm tắt
Từ khóa
Tài liệu tham khảo
Kirschstein, T.: Comparison of energy demands of drone-based and ground-based parcel delivery services. Transp. Res. D Transp. Environ. (2020). https://doi.org/10.1016/j.trd.2019.102209
Rienecker, H., Hildebrand, V., Pfifer, H.: Energy optimal flight path planing for unmanned aerial vehicle in urban environments. In: Proceedings of the 2022 CEAS EuroGNC Conference. CEAS, Berlin, Germany CEAS-GNC-2022-031 (2022)
Oettershagen, P., Muller, B., Achermann, F., Siegwart, R.: Real-time 3d wind field prediction onboard UAVs for safe flight in complex terrain. In: 2019 IEEE Aerospace Conference, pp. 1–10. IEEE, New York City, United States (2019). https://doi.org/10.1109/aero.2019.8742160
Maronga, B., Gryschka, M., Heinze, R., Hoffmann, F., Kanani-Sühring, F., Keck, M., Ketelsen, K., Letzel, M.O., Sühring, M., Raasch, S.: The parallelized large-eddy simulation model (PALM) version 4.0 for atmospheric and oceanic flows: model formulation, recent developments, and future perspectives. Geosci. Model Dev. 8(8), 2515–2551 (2015). https://doi.org/10.5194/gmd-8-2515-2015
Land, A.H., Doig, A.G.: An automatic method of solving discrete programming problems. Econometrica 28(3), 497–520 (1960). https://doi.org/10.2307/1910129
de Camargo, J.T.F., de Camargo, E.A.F., Veraszto, E.V., Barreto, G., Cândido, J., Aceti, P.A.Z.: Route planning by evolutionary computing: an approach based on genetic algorithms. Procedia Comput. Sci. 149, 71–79 (2019). https://doi.org/10.1016/j.procs.2019.01.109
Biswas, S., Anavatti, S.G., Garratt, M.A.: Particle swarm optimization based co-operative task assignment and path planning for multi-agent system. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–6. IEEE, New York City, United States (2017). https://doi.org/10.1109/ssci.2017.8280872
Yu, J., Su, Y., Liao, Y.: The path planning of mobile robot by neural networks and hierarchical reinforcement learning. Front. Neurorobot. (2020). https://doi.org/10.3389/fnbot.2020.00063
Tang, L., Wang, H., Li, P., Wang, Y.: Real-time trajectory generation for quadrotors using b-spline based non-uniform kinodynamic search. In: 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1133–1138. IEEE, New York City, United States (2019). https://doi.org/10.1109/robio49542.2019.8961485
Garcia, M., Viguria, A., Ollero, A.: Dynamic graph-search algorithm for global path planning in presence of hazardous weather. J. Intell. Robot. Syst. 69, 285–295 (2012). https://doi.org/10.1007/s10846-012-9704-7
Babel, L.: Flight path planning for unmanned aerial vehicles with landmark-based visual navigation. Rob. Auton. Syst. 62(2), 142–150 (2014). https://doi.org/10.1016/j.robot.2013.11.004
Srivastava, K., Pandey, P.C., Sharma, J.K.: An approach for route optimization in applications of precision agriculture using UAVs. Drones (2020). https://doi.org/10.3390/drones4030058
Bortoff, S.A.: Path planning for UAVs. In: Proceedings of the 2000 American Control Conference, pp. 364–3681. IEEE, New York City, United States (2000). https://doi.org/10.1109/acc.2000.878915
Sajid, M., Mittal, H., Pare, S., Prasad, M.: Routing and scheduling optimization for UAV assisted delivery system: a hybrid approach. Appl. Soft Comput. (2022). https://doi.org/10.1016/j.asoc.2022.109225
Rosenow, J., Lindner, M., Fricke, H.: Assessment of Air Traffic Networks Considering Multi-criteria Targets in Network and Trajectory Optimization. In: Deutscher Luft- und Raumfahrtkongress 2015. DGLR, Rostock, Germany (2015)
Junwei, Z., Jianjun, Z.: Path planning of multi-UAVs concealment attack based on new a method. In: 2014 Sixth International Conference on Intelligent Human-Machine Systems and Cybernetics, pp. 401–404. IEEE, New York City, United States (2014). https://doi.org/10.1109/ihmsc.2014.198
Li, J., Deng, G., Luo, C., Lin, Q., Yan, Q., Ming, Z.: A hybrid path planning method in unmanned air/ground vehicle (UAV/UGV) cooperative systems. IEEE Trans. Veh. Technol. 65(12), 9585–9596 (2016). https://doi.org/10.1109/tvt.2016.2623666
Mandloi, D., Arya, R., Verma, A.K.: Unmanned aerial vehicle path planning based on A$$\ast$$ algorithm and its variants in 3d environment. Int. J. Syst. Assur. Eng. Manag. 12(5), 990–1000 (2021). https://doi.org/10.1007/s13198-021-01186-9
Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968). https://doi.org/10.1109/tssc.1968.300136
Yang, K., Sukkarieh, S.: 3d smooth path planning for a UAV in cluttered natural environments. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 794–800. IEEE, New York City, United States (2008). https://doi.org/10.1109/iros.2008.4650637
Pwone. Phoenix-Wings GmbH. https://phoenix-wings.de/pwone/. Accessed 18 Oct 2021
VDI-Richtlinie 3783 Blatt 12, Umweltmeteorologie, Physikalische Modellierung von Strömungs- und Ausbreitungsvorgängen in der atmosphärischen Grenzschicht, Windkanalanwendungen. (Gründruck) (2022)
Climate and average weather year round in dresden germany. Cedar Lake Ventures, Inc.. https://weatherspark.com/y/75895/Average-Weather-in-Dresden-Germany-Year-Round. Accessed 25 Jul 2022
Letzel, M.O., Krane, M., Raasch, S.: High resolution urban large-eddy simulation studies from street canyon to neighbourhood scale. Atmos. Environ. 42(38), 8770–8784 (2008). https://doi.org/10.1016/j.atmosenv.2008.08.001
Kanda, M., Inagaki, A., Miyamoto, T., Gryschka, M., Raasch, S.: A new aerodynamic parametrization for real urban surfaces. Bound.-Layer Meteorol. 148(2), 357–377 (2013). https://doi.org/10.1007/s10546-013-9818-x
Letzel, M., Gaus, G., Raasch, S., Jensen, N., Kanda, M.: Turbulent Flow Around High-rise Office Buildings in Downtown Tokyo. Dynamic Visualization in Science, No. 13100, 2008
Tack, A., Koskinen, J., Hellsten, A., Sievinen, P., Esau, I., Praks, J., Kukkonen, J., Hallikainen, M.: Morphological database of Paris for atmospheric modeling purposes. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 5(6), 1803–1810 (2012). https://doi.org/10.1109/jstars.2012.2201134
Franke, J., Baklanov, A.: Best Practice Guideline for the CFD Simulation of Flows in the Urban Environment: COST Action 732 Quality Assurance and Improvement of Microscale Meteorological Models, (2007)
Palmgroup: E3: Flow Around a Cubical Building. Institute of Meteorology and Climatology, Leibniz Universität Hannover, (2020). Institute of Meteorology and Climatology, Leibniz Universität Hannover
Arakawa, A., Lamb, V.R.: Computational design of the basic dynamical processes of the UCLA general circulation model. In: Methods in Computational Physics: Advances in Research and Applications, Vol. 17, pp. 173–265. Elsevier, Amsterdam, Netherlands (1977). https://doi.org/10.1016/b978-0-12-460817-7.50009-4
McClamroch, N.H.: Steady aircraft flight and performance. Princeton University Press, Princeton (2011). (ISBN: 9781680159097)
Pathfinding with A$$\ast$$. Python Pool. http://theory.stanford.eduamitp/GameProgramming/Accessed 28 Jun 2022