Energy optimal 3D flight path planning for unmanned aerial vehicle in urban environments

Hannes Rienecker1, Veit Hildebrand1, Harald Pfifer1
1Chair of Flight Mechanics and Control, Technische Universität Dresden, Dresden, Germany

Tóm tắt

AbstractThis paper presents a general approach to compute energy optimal flight paths for unmanned aerial vehicle (UAV) in urban environments. To minimize the energy required, the flight path is optimized by exploiting local wind phenomena, i.e., upwind and tailwind areas from the airflow around buildings. A realistic wind field of a model urban environment typical for continental Europe is generated using PALM, a Large Eddy Simulation tool. The calculated wind field feeds into the flight path planning algorithm to minimize the energy required. A specifically tailored A-Star-Algorithm is used to optimize flight trajectories. The approach is demonstrated on a delivery UAV benchmark scenario. Energy optimal flight paths are compared to shortest way trajectories for 12 different scenarios. It is shown that energy can be saved significantly while flying in a city using knowledge of the current wind field.

Từ khóa


Tài liệu tham khảo

Kirschstein, T.: Comparison of energy demands of drone-based and ground-based parcel delivery services. Transp. Res. D Transp. Environ. (2020). https://doi.org/10.1016/j.trd.2019.102209

Rienecker, H., Hildebrand, V., Pfifer, H.: Energy optimal flight path planing for unmanned aerial vehicle in urban environments. In: Proceedings of the 2022 CEAS EuroGNC Conference. CEAS, Berlin, Germany CEAS-GNC-2022-031 (2022)

Oettershagen, P., Muller, B., Achermann, F., Siegwart, R.: Real-time 3d wind field prediction onboard UAVs for safe flight in complex terrain. In: 2019 IEEE Aerospace Conference, pp. 1–10. IEEE, New York City, United States (2019). https://doi.org/10.1109/aero.2019.8742160

Maronga, B., Gryschka, M., Heinze, R., Hoffmann, F., Kanani-Sühring, F., Keck, M., Ketelsen, K., Letzel, M.O., Sühring, M., Raasch, S.: The parallelized large-eddy simulation model (PALM) version 4.0 for atmospheric and oceanic flows: model formulation, recent developments, and future perspectives. Geosci. Model Dev. 8(8), 2515–2551 (2015). https://doi.org/10.5194/gmd-8-2515-2015

Land, A.H., Doig, A.G.: An automatic method of solving discrete programming problems. Econometrica 28(3), 497–520 (1960). https://doi.org/10.2307/1910129

de Camargo, J.T.F., de Camargo, E.A.F., Veraszto, E.V., Barreto, G., Cândido, J., Aceti, P.A.Z.: Route planning by evolutionary computing: an approach based on genetic algorithms. Procedia Comput. Sci. 149, 71–79 (2019). https://doi.org/10.1016/j.procs.2019.01.109

Biswas, S., Anavatti, S.G., Garratt, M.A.: Particle swarm optimization based co-operative task assignment and path planning for multi-agent system. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–6. IEEE, New York City, United States (2017). https://doi.org/10.1109/ssci.2017.8280872

Yu, J., Su, Y., Liao, Y.: The path planning of mobile robot by neural networks and hierarchical reinforcement learning. Front. Neurorobot. (2020). https://doi.org/10.3389/fnbot.2020.00063

Tang, L., Wang, H., Li, P., Wang, Y.: Real-time trajectory generation for quadrotors using b-spline based non-uniform kinodynamic search. In: 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1133–1138. IEEE, New York City, United States (2019). https://doi.org/10.1109/robio49542.2019.8961485

Garcia, M., Viguria, A., Ollero, A.: Dynamic graph-search algorithm for global path planning in presence of hazardous weather. J. Intell. Robot. Syst. 69, 285–295 (2012). https://doi.org/10.1007/s10846-012-9704-7

Babel, L.: Flight path planning for unmanned aerial vehicles with landmark-based visual navigation. Rob. Auton. Syst. 62(2), 142–150 (2014). https://doi.org/10.1016/j.robot.2013.11.004

Srivastava, K., Pandey, P.C., Sharma, J.K.: An approach for route optimization in applications of precision agriculture using UAVs. Drones (2020). https://doi.org/10.3390/drones4030058

Bortoff, S.A.: Path planning for UAVs. In: Proceedings of the 2000 American Control Conference, pp. 364–3681. IEEE, New York City, United States (2000). https://doi.org/10.1109/acc.2000.878915

Sajid, M., Mittal, H., Pare, S., Prasad, M.: Routing and scheduling optimization for UAV assisted delivery system: a hybrid approach. Appl. Soft Comput. (2022). https://doi.org/10.1016/j.asoc.2022.109225

Rosenow, J., Lindner, M., Fricke, H.: Assessment of Air Traffic Networks Considering Multi-criteria Targets in Network and Trajectory Optimization. In: Deutscher Luft- und Raumfahrtkongress 2015. DGLR, Rostock, Germany (2015)

Junwei, Z., Jianjun, Z.: Path planning of multi-UAVs concealment attack based on new a method. In: 2014 Sixth International Conference on Intelligent Human-Machine Systems and Cybernetics, pp. 401–404. IEEE, New York City, United States (2014). https://doi.org/10.1109/ihmsc.2014.198

Li, J., Deng, G., Luo, C., Lin, Q., Yan, Q., Ming, Z.: A hybrid path planning method in unmanned air/ground vehicle (UAV/UGV) cooperative systems. IEEE Trans. Veh. Technol. 65(12), 9585–9596 (2016). https://doi.org/10.1109/tvt.2016.2623666

Mandloi, D., Arya, R., Verma, A.K.: Unmanned aerial vehicle path planning based on A$$\ast$$ algorithm and its variants in 3d environment. Int. J. Syst. Assur. Eng. Manag. 12(5), 990–1000 (2021). https://doi.org/10.1007/s13198-021-01186-9

Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968). https://doi.org/10.1109/tssc.1968.300136

Yang, K., Sukkarieh, S.: 3d smooth path planning for a UAV in cluttered natural environments. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 794–800. IEEE, New York City, United States (2008). https://doi.org/10.1109/iros.2008.4650637

Pwone. Phoenix-Wings GmbH. https://phoenix-wings.de/pwone/. Accessed 18 Oct 2021

VDI-Richtlinie 3783 Blatt 12, Umweltmeteorologie, Physikalische Modellierung von Strömungs- und Ausbreitungsvorgängen in der atmosphärischen Grenzschicht, Windkanalanwendungen. (Gründruck) (2022)

Climate and average weather year round in dresden germany. Cedar Lake Ventures, Inc.. https://weatherspark.com/y/75895/Average-Weather-in-Dresden-Germany-Year-Round. Accessed 25 Jul 2022

Letzel, M.O., Krane, M., Raasch, S.: High resolution urban large-eddy simulation studies from street canyon to neighbourhood scale. Atmos. Environ. 42(38), 8770–8784 (2008). https://doi.org/10.1016/j.atmosenv.2008.08.001

Kanda, M., Inagaki, A., Miyamoto, T., Gryschka, M., Raasch, S.: A new aerodynamic parametrization for real urban surfaces. Bound.-Layer Meteorol. 148(2), 357–377 (2013). https://doi.org/10.1007/s10546-013-9818-x

Letzel, M., Gaus, G., Raasch, S., Jensen, N., Kanda, M.: Turbulent Flow Around High-rise Office Buildings in Downtown Tokyo. Dynamic Visualization in Science, No. 13100, 2008

Tack, A., Koskinen, J., Hellsten, A., Sievinen, P., Esau, I., Praks, J., Kukkonen, J., Hallikainen, M.: Morphological database of Paris for atmospheric modeling purposes. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 5(6), 1803–1810 (2012). https://doi.org/10.1109/jstars.2012.2201134

Franke, J., Baklanov, A.: Best Practice Guideline for the CFD Simulation of Flows in the Urban Environment: COST Action 732 Quality Assurance and Improvement of Microscale Meteorological Models, (2007)

Palmgroup: E3: Flow Around a Cubical Building. Institute of Meteorology and Climatology, Leibniz Universität Hannover, (2020). Institute of Meteorology and Climatology, Leibniz Universität Hannover

Arakawa, A., Lamb, V.R.: Computational design of the basic dynamical processes of the UCLA general circulation model. In: Methods in Computational Physics: Advances in Research and Applications, Vol. 17, pp. 173–265. Elsevier, Amsterdam, Netherlands (1977). https://doi.org/10.1016/b978-0-12-460817-7.50009-4

McClamroch, N.H.: Steady aircraft flight and performance. Princeton University Press, Princeton (2011). (ISBN: 9781680159097)

Pathfinding with A$$\ast$$. Python Pool. http://theory.stanford.eduamitp/GameProgramming/Accessed 28 Jun 2022

Majka, A.: Flight loads of mini UAV. Solid State Phenom. 198, 194–199 (2013). https://doi.org/10.4028/www.scientific.net/ssp.198.194