Energy gaps in the failed high-Tc superconductor La1.875Ba0.125CuO4

Nature Physics - Tập 5 - Trang 119-123 - 2008
Rui-Hua He1, Kiyohisa Tanaka1,2,3, Sung-Kwan Mo1,2, Takao Sasagawa1,4, Masaki Fujita5, Tadashi Adachi6, Norman Mannella1,2,7, Kazuyoshi Yamada5, Yoji Koike6, Zahid Hussain2, Zhi-Xun Shen1
1Department of Physics, Applied Physics and Stanford Synchrotron Radiation Laboratory, Stanford University, Stanford, California 94305, USA
2Advanced Light Source, Lawrence Berkeley National Lab, Berkeley, California 94720, USA
3Department of Physics, Osaka University, Osaka 560-0043, Japan
4Materials and Structures Laboratory, Tokyo Institute of Technology, Kanagawa 226-8503, Japan
5Institute of Materials Research, Tohoku University, Sendai 980-8577, Japan
6Department of Applied Physics, Tohoku University, Sendai 980-8579, Japan
7Present address: Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA,

Tóm tắt

ARPES measurements of the ‘failed’ superconductor LBCO-1/8 suggest that its pseudogap phase consists of two distinct components. The result could be an important clue into the nature of this phase in the copper oxide superconductors. A central issue in high-Tc superconductivity is the nature of the normal-state gap (pseudogap)1 in the underdoped regime and its relationship with superconductivity. Despite persistent efforts, theoretical ideas for the pseudogap evolve around fluctuating superconductivity2, competing order3,4,5,6,7,8 and spectral weight suppression due to many-body effects9. Recently, although some experiments in the superconducting state indicate a distinction between the superconducting gap and pseudogap 10,11,12,13,14, others in the normal state, either by extrapolation from high-temperature data15 or directly from La1.875Ba0.125CuO4 (LBCO-1/8) at low temperature16, suggest the ground-state pseudogap is a single gap of d-wave17 form. Here, we report angle-resolved photoemission data from LBCO-1/8, collected with improved experimental conditions, that reveal the ground-state pseudogap has a pronounced deviation from the simple d-wave form. It contains two distinct components: a d-wave component within an extended region around the node and the other abruptly enhanced close to the antinode, pointing to a dual nature of the pseudogap in this failed high-Tc superconductor that involves a possible precursor-pairing energy scale around the node and another of different but unknown origin near the antinode.

Từ khóa


Tài liệu tham khảo

Timusk, T. & Statt, B. The pseudogap in high-temperature superconductors: An experimental survey. Rep. Prog. Phys. 62, 61–122 (1999).

Emery, V. J. & Kivelson, S. A. Superconductivity in bad metals. Phys. Rev. Lett. 74, 3253–3256 (1995).

Honerkamp, C. & Lee, P. A. Staggered flux vortices and the superconducting transition in the layered cuprates. Phys. Rev. Lett. 92, 177002 (2004).

Chakravarty, S., Laughlin, R. B., Morr, D. K. & Nayak, C. Hidden order in the cuprates. Phys. Rev. B 63, 094503 (2001).

Varma, C. M. Non-Fermi-liquid states and pairing instability of a general model of copper oxide metals. Phys. Rev. B 55, 14554–14580 (1997).

Benfatto, L., Caprara, S. & DiCastro, C. Gap and pseudogap evolution within the charge-ordering scenario for superconducting cuprates. Eur. Phys. J. B 17, 95–102 (2000).

Li, J.-X., Wu, C.-Q. & Lee, D.-H. Checkerboard charge density wave and pseudogap of high-Tc cuprate. Phys. Rev. B 74, 184515 (2006).

Das, T., Markiewicz, R. S. & Bansil, A. Competing order scenario of two-gap behaviour in hole-doped cuprates. Phys. Rev. B 77, 134516 (2008).

Cataudella, V., De Filippis, G., Mishchenko, A. S. & Nagaosa, N. Temperature dependence of the angle resolved photoemission spectra in the undoped cuprates: Self-consistent approach to the t-J Holstein model. Phys. Rev. Lett. 99, 226402 (2007).

Tanaka, K. et al. Distinct Fermi-momentum-dependent energy gaps in deeply underdoped Bi2212. Science 314, 1910–1913 (2006).

Lee, W.-S. et al. Abrupt onset of second energy gap at superconducting transition of underdoped Bi2212. Nature 450, 81–84 (2007).

Kondo, T. et al. Evidence for two energy scales in the superconducting state of optimally doped (Bi,Pb)2(Sr,La)2CuO6+δ . Phys. Rev. Lett. 98, 267004 (2007).

Terashima, K. et al. Anomalous momentum dependence of the superconducting coherence peak and its relation to the pseudogap of La1.85Sr0.15CuO4 . Phys. Rev. Lett. 99, 017003 (2007).

Boyer, M. C. et al. Imaging the two gaps of the high-temperature superconductor Bi2Sr2CuO6+x . Nature Phys. 3, 802–806 (2007).

Kanigel, A. et al. Evolution of the pseudogap from Fermi arcs to the nodal liquid. Nature Phys. 2, 447–451 (2006).

Valla, T., Fedorov, A. V., Lee, J., Davis, J. C. & Gu, G. D. The ground state of the pseudogap in cuprate superconductors. Science 314, 1914–1916 (2006).

Tsuei, C. C. & Kirtley, J. R. Pairing symmetry in cuprate superconductors. Rev. Mod. Phys. 72, 969–1016 (2000).

Tranquada, J. M. et al. Quantum magnetic excitations from stripes in copper oxide superconductors. Nature 429, 534–538 (2004).

Fujita, M., Goka, H., Yamada, K., Tranquada, J. M. & Regnault, L. P. Stripe order, depinning, and fluctuations in La1.875Ba0.125CuO4 and La1.875Ba0.075Sr0.050CuO4 . Phys. Rev. B 70, 104517 (2004).

Abbamonte, P. et al. Spatially modulated ‘Mottness’ in La2−xBaxCuO4 . Nature Phys. 1, 155–158 (2005).

Damascelli, A., Hussain, Z. & Shen, Z.-X. Angle-resolved photoemission of cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003) and references therein.

Berg, E., Chen, C.-C. & Kivelson, S. A. Stability of nodal quasiparticles in superconductors with coexisting orders. Phys. Rev. Lett. 100, 027003 (2008).

Mesot, J. et al. Superconducting gap anisotropy and quasiparticle interactions: A doping dependent photoemission study. Phys. Rev. Lett. 83, 840–843 (1999).

Kordyuk, A. A., Borisenko, S. V., Knupfer, M. & Fink, J. Measuring the gap in angle-resolved photoemission experiments on cuprates. Phys. Rev. B 67, 064504 (2003).

Norman, M. R., Randeria, M., Ding, H. & Campuzano, J. C. Phenomenology of the low-energy spectral function in high-Tc superconductors. Phys. Rev. B 57, R11093–R11096 (1998).

Sasagawa, T. et al. Magnetization and resistivity measurements of the first-order vortex phase transition in (La1−xSrx)2CuO4 . Phys. Rev. B 61, 1610–1617 (2000).

Adachi, T. et al. Magnetic-field effects on the in-plane electrical resistivity in single-crystal La2−xBaxCuO4 and La1.6−xNd0.4SrxCuO4 around x=1/8: Implication for the field-induced stripe order. Phys. Rev. B 71, 104516 (2005).

Li, Q., Hücker, M., Gu, G. D., Tsvelik, A. M. & Tranquada, J. M. Two-dimensional superconducting fluctuations in stripe-ordered La1.875Ba0.125CuO4 . Phys. Rev. Lett. 99, 067001 (2007).

Berg, E. et al. Dynamical layer decoupling in a stripe-ordered high-Tc superconductor. Phys. Rev. Lett. 99, 127003 (2007).

Himeda, A., Kato, T. & Ogata, M. Stripe states with spatially oscillating d-Wave superconductivity in the two-dimensional t-t′-J model. Phys. Rev. Lett. 88, 117001 (2002).