Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering
Tóm tắt
Từ khóa
Tài liệu tham khảo
Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).
Pereira, V. M., Castro Neto, A. H. & Peres, N. M. R. Tight-binding approach to uniaxial strain in graphene. Phys. Rev. B 80, 045401 (2009).
Ni, Z. et al. Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano 3, 483 (2009).
Farjam, M. & Rafii-Tabar, H. Comment on band structure engineering of graphene by strain: First-principles calculations. Preprint at < http://arxiv.org/abs/0903.1702 > (2009).
Mohiuddin, T. M. G. et al. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Gruneisen parameters and sample orientation. Phys. Rev. B 79, 205433 (2009).
Huang, M. et al. Raman spectroscopy of graphene under uniaxial stress: Phonon softening and determination of the crystallographic orientation. Proc. Natl Acad. Sci. USA 106, 7304–7308 (2009).
Lee, C., Wei, X., Kysar, J. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).
Kim, K. S. et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009).
Bao, W. et al. Controlled ripple texturing of suspended graphene and ultrathin graphite membranes. Nature Nanotech. 4, 562–566 (2009).
Sasaki, K., Kawazoe, Y. & Saito, R. Local energy gap in deformed carbon nanotubes. Prog. Theor. Phys. 113, 463–480 (2005).
Morozov, S. V. et al. Strong suppression of weak localization in graphene. Phys. Rev. Lett. 97, 016801 (2006).
Morpurgo, A. F. & Guinea, F. Intervalley scattering, long-range disorder, and effective time-reversal-symmetry breaking in graphene. Phys. Rev. Lett. 97, 196804 (2006).
Moore, J. E. & Balents, L. Topological invariants of time-reversal-invariant band structures. Phys. Rev. B 75, 121306 (2007).
Qi, X.-L., Hughes, T. L. & Zhang, S.-C. Topological field theory of time-reversal invariant insulators. Phys. Rev. B 78, 195424 (2008).
Martin, I., Blanter, Ya. M. & Morpurgo, A. F. Topological confinement in bilayer graphene. Phys. Rev. Lett. 100, 036804 (2008).
Semenoff, G. V., Semenoff, V. & Zhou, F. Domain walls in gapped graphene. Phys. Rev. Lett. 101, 087204 (2008).
Guinea, F., Horovitz, B. & Le Doussal, P. Gauge field induced by ripples in graphene. Phys. Rev. B 77, 205421 (2008).
Wehling, T. O., Balatsky, A. V., Tsvelik, A. M., Katsnelson, M. I. & Lichtenstein, A. I. Midgap states in corrugated graphene: Ab initio calculations and effective field theory. Europhys. Lett. 84, 17003 (2008).
Suzuura, H. & Ando, T. Phonons and electron–phonon scattering in carbon nanotubes. Phys. Rev. B 65, 235412 (2002).
Mañes, J. L. Symmetry based approach to electron–phonon interactions in graphene. Phys. Rev. B 76, 045430 (2007).
Giesbers, A. J. et al. Quantum-Hall activation gaps in graphene. Phys. Rev. Lett. 99, 206833 (2007).
Bolotin, K. I. et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008).
Xu, D., Skachko, I., Barker, A. & Andrei, E. Y. Approaching ballistic transport in suspended graphene. Nature Nano 3, 491–495 (2008).
Garcı´a-Flores, A. F., Terashita, H., Granado, E. & Kopelevich, Y. Landau levels in bulk graphite by Raman spectroscopy. Phys. Rev. B 79, 113105 (2009).
Abanin, D. A. et al. Dissipative quantum Hall effect in graphene near the Dirac point. Phys. Rev. Lett. 98, 196806 (2007).