Energy exchange management in a prosumer microgrid cluster: a piece of cake

Ayoub Zerka1, Mohammed Ouassaid1, Mohamed Maaroufi1, Reda Rabeh2
1Engineering for Smart and Sustainable Systems Research, Mohammadia School of Engineers, Mohammed V University in Rabat, Rabat, Morocco
2LERMA Laboratory, International University of Rabat, Sala Al Jadida, Morocco

Tóm tắt

The objective of this paper is to propose a proportional-fair energy exchange framework in a prosumer microgrid system taking into consideration the trading preferences of buyer microgrids. In fact, in a multi-microgrid system, there are potential seller microgrids with energy surplus and buyer microgrids with energy demand. The buyer microgrids may have different and,sometimes, competing trading preferences. The proposed framework ensures that each buyer gets a part of its energy requirement fulfilled from its preferred suppliers. Simultaneously, it incentivizes local energy trading over the central high-cost transactions with the main central grid. To this end, a Knapsack problem inspired approach is first suggested to unravel and fix the optimal market preferences of buyer microgrids. Afterwards, a self-organizing, transparent and anti-greed by design Last Diminisher protocol, which is a procedure of fair Cake-Cutting problem, is used to fairly meet the conflicting energy demand of buyers. The proposed approach is evaluated and validated through simulations. It has been shown that the suggested protocol can achieve an efficient and fair energy allocation among interconnected microgrids while reducing the total energy buying cost compared to other methods used in the literature.

Từ khóa


Tài liệu tham khảo

Facchini, A.: Distributed energy resources: planning for the future. Nat. Energy 2, 17129 (2017). https://doi.org/10.1038/nenergy.2017.129 Li, Q., Xu, Z., Yang, L.: Recent advancements on the development of microgrids. J. Mod. Power Syst. Clean Energy 2, 206–211 (2014). https://doi.org/10.1007/s40565-014-0069-8 Yao, L., Yang, B., Cui, H., et al.: Challenges and progresses of energy storage technology and its application in power systems. J. Mod. Power Syst. Clean Energy 4, 519–528 (2016). https://doi.org/10.1007/s40565-016-0248-x Refaat, S.S., Ellabban, O., Bayhan, S., Abu-Rub, H., Blaabjerg, F., Begovic, M.M., Massaoudi, M., Refaat, S.S., Abu-Rub, H.: On the pivotal role of artificial intelligence toward the evolution of smart grids. In smart grid and enabling technologies (eds S.S. Refaat, O. Ellabban, S. Bayhan, H. Abu-Rub, F. Blaabjerg and M.M. Begovic) (2021). https://doi.org/10.1002/9781119422464.ch15 Mollah, M.B., Zhao, J., Niyato, D.T., Lam, K., Zhang, X., Ghias, A.M., Koh, L.H., Yang, L.: Blockchain for future smart grid: a comprehensive survey. IEEE Internet Things J. 8, 18–43 (2019). https://doi.org/10.1109/JIOT.2020.2993601 Hua, Weiqi, Chen, Ying, Qadrdan, Meysam, Jiang, Jing, Sun, Hongjian, Wu, Jianzhong: Applications of blockchain and artificial intelligence technologies for enabling prosumers in smart grids: a review. Renew. Sustain. Energy Rev. (2022). https://doi.org/10.1016/j.rser.2022.112308 Kakarott, J., Skwarek, V.: An enhanced DLT-based CO2 emission trading system, 2020 fourth world conference on smart trends in systems, security and sustainability (WorldS4), 2020, pp. 435-442. https://doi.org/10.1109/WorldS450073.2020.9210260 Eicke, L., Weko, S., Apergi, M., Marian, A.: Pulling up the carbon ladder? Decarbonization, dependence, and third-country risks from the European carbon border adjustment mechanism. Energy Res. Soc. Sci. 80, 102240 (2021). https://doi.org/10.1016/j.erss.2021.102240 Kühnbach, M., Bekk, A., Weidlich, A.: Towards improved prosumer participation: electricity trading in local markets. Energy 239, 122445 (2022). https://doi.org/10.1016/j.energy.2021.122445 Ali, L., Muyeen, S.M., Bizhani, H., Ghosh, A.: A peer-to-peer energy trading for a clustered microgrid - game theoretical approach. Int. J. Electr. Power Energy Syst. 133, 107307 (2021). https://doi.org/10.1016/j.ijepes.2021.107307 Paravantis, J.A., Kontoulis, N., Ballis, A., Tsirigotis, D., Dourmas, V.: A geopolitical review of definitions, dimensions and indicators of energy security. 2018 9th international conference on information, intelligence, systems and applications (IISA), pp. 1-8 (2018). https://doi.org/10.1109/IISA.2018.8633676 Yue, Z., Jianzhong, W., Chao, L., Wenlong, M.: State-ofthe- art analysis and perspectives for peer-to-peer energy trading. Engineering (2020). https://doi.org/10.1016/j.eng.2020.06.002 Dudkina, E., Crisostomi, E., Poli, D.: A review of P2P energy markets and a possible application for remote areas. 2020 IEEE PES innovative smart grid technologies Europe (ISGT-Europe), pp. 869-873 (2020). https://doi.org/10.1109/ISGT-Europe47291.2020.9248870 Zia, M.F., Benbouzid, M., Elbouchikhi, E., Muyeen, S.M., Techato, K., Guerrero, J.M.: Microgrid transactive energy: review, architectures, distributed ledger technologies, and market analysis. IEEE Access 8, 19410–19432 (2020). https://doi.org/10.1109/ACCESS.2020.2968402 Mohsen, K., Amrit, P., Reza, R., Pierluigi, S.: A new method for peer matching and negotiation of prosumers in peer-to-peer energy markets. IEEE Trans. Smart Grid (2021). https://doi.org/10.1109/TSG.2020.3048397 Cheng, L., Yu, T.: Game-theoretic approaches applied to transactions in the open and ever-growing electricity markets from the perspective of power demand response: an overview. IEEE Access 7, 25727–25762 (2019). https://doi.org/10.1109/ACCESS.2019.2900356 Paudel, A., Chaudhari, K., Long, C., Gooi, H.B.: Peer-to-peer energy trading in a prosumer-based community microgrid: a game-theoretic model. IEEE Trans. Ind. Electron. 66(8), 6087–6097 (2019). https://doi.org/10.1109/TIE.2018.2874578 ALsalloum, H., Rahim, R., Merghem-Boulahia, L.: Prioritizing prosumers in the energy trading mechanism: a game theoretic approach. 2019 international conference on wireless and mobile computing, Networking and communications (WiMob), pp. 1-5 (2019). https://doi.org/10.1109/WiMOB.2019.8923202 Wu, Q., Xie, Z., Ren, H., Li, Q., Yang, Y.: Optimal trading strategies for multi-energy microgrid cluster considering demand response under different trading modes: a comparison study. Energy 254, 124448 (2022). https://doi.org/10.1016/j.energy.2022.124448 Liu, N., Yu, X., Wang, C., Wang, J.: Energy sharing management for microgrids with PV prosumers: a Stackelberg game approach. IEEE Trans. Ind. Inform. 13(3), 1088–1098 (2017). https://doi.org/10.1109/TII.2017.2654302 Zaidi, SS.M.B.H., Ahmed, A., Sohail, M.B., Shah, S.H.H., Ahmed, A., Hussain, I.: Energy trading for shared facility control of a smart community using auction process. 2019 7th international electrical engineering congress (iEECON), pp. 1-4 (2019). https://doi.org/10.1109/iEECON45304.2019.8938966 Zaidi, B.H., Hong, S.H.: Combinatorial double auctions for multiple microgrid trading. Electr. Eng. 100, 1069–1083 (2018). https://doi.org/10.1007/s00202-017-0570-y He, L., Zhang, J.: A community sharing market with PV and energy storage: an adaptive Bidding-based double-side auction mechanism. IEEE Trans. Smart Grid 12(3), 2450–2461 (2021). https://doi.org/10.1109/TSG.2020.3042190 Zhang, H., Zhang, H., Song, L., Li, Y., Han, Z.: Peer-to-Peer Energy Trading in DC Packetized Power Microgrids Using Iterative Auction. 2019 IEEE global communications conference (GLOBECOM), pp. 1-6 (2019). https://doi.org/10.1109/GLOBECOM38437.2019.9013179 Naz, K., Zainab, F., Mehmood, K.K., Bukhari, S.B.A., Khalid, H.A., Kim, C.-H.: An optimized framework for energy management of multi-microgrid systems. Energies 14, 6012 (2021). https://doi.org/10.3390/en14196012 Gregoratti, D., Matamoros, J.: Distributed energy trading: the multiple- microgrid case. IEEE Trans. Ind. Electron. 62(4), 2551–2559 (2015). https://doi.org/10.1109/TIE.2014.2352592 Paudel, A., Gooi, H.B.: Pricing in Peer-to-Peer Energy Trading Using Distributed Optimization Approach. 2019 IEEE power & energy society general meeting (PESGM), pp. 1-5 (2019). https://doi.org/10.1109/PESGM40551.2019.8973868 Zhu, H., Ouahada, K., Abu-Mahfouz, A.M.: Peer-to-peer energy trading in smart energy communities: a Lyapunov-based energy control and trading system. IEEE Access 10, 42916–42932 (2022). https://doi.org/10.1109/ACCESS.2022.3167828 Mehdinejad, M., Shayanfar, H., Mohammadi-Ivatloo, B.: Decentralized blockchain-based peer-to-peer energy-backed token trading for active prosumers. Energy 244, 122713–122731 (2022). https://doi.org/10.1016/j.energy.2021.122713 Karthik, P.K., Anand, R.: Energy Trading in Microgrids using BlockChain Technology. 2020 4th international conference on intelligent computing and control systems (ICICCS), pp. 884-888 (2020). https://doi.org/10.1109/ICICCS48265.2020.9121050 AlSkaif, T., Crespo-Vazquez, J.L., Sekuloski, M., van Leeuwen, G., Catalão, J.P.S.: Blockchain-based fully peer-to-peer energy trading strategies for residential energy systems. IEEE Trans. Ind. Inform. 18(1), 231–241 (2022). https://doi.org/10.1109/TII.2021.3077008 Joseph, A., Balachandra, P.: Smart grid to energy internet: a systematic review of transitioning electricity systems. IEEE Access 8, 215787–215805 (2020). https://doi.org/10.1109/ACCESS.2020.3041031 Ma, Z., Zhang, C., Qian, C.: The Development of Machine Learning In Energy Trading. 2019 1st international conference on industrial artificial intelligence (IAI), pp. 1-5 (2019). https://doi.org/10.1109/ICIAI.2019.8850824 Zhou, S., Hu, Z., Gu, W., Jiang, M., Zhang, X.: Artificial intelligence based smart energy community management: a reinforcement learning approach. CSEE J. Power nergy Syst. 5(1), pp. 1–10, (2019). https://doi.org/10.17775/CSEEJPES.2018.00840 Chen, T., Su, W.: Local energy trading behavior modeling with deep reinforcement learning. IEEE Access 6, 62806–62814 (2018). https://doi.org/10.1109/ACCESS.2018.2876652 Sun, H., Kitamura, S., Nikovski, D., Mori, K., Hashimoto, H.: Illegitimate Trade Detection for Electricity Energy Markets. 2020 international conference on smart grids and energy systems (SGES), pp. 338-343 (2020). https://doi.org/10.1109/SGES51519.2020.00066 Hwang, H.-K., Yoon, A.-Y., Kang, H.-K., Moon, S.-I.: Retail electricity pricing strategy via an artificial neural network-based demand response model of an energy storage system. IEEE Access 9, 13440–13450 (2021). https://doi.org/10.1109/ACCESS.2020.3048048 Jogunola, O., Wang, W., Adebisi, B.: Prosumers matching and least-cost energy path optimisation for peer-to-peer energy trading. IEEE Access 8, 95266–95277 (2020). https://doi.org/10.1109/ACCESS.2020.2996309 Essayeh, C., El-Fenni, M.R., Dahmouni, H.: Optimal Energy Exchange in Micro-Grid Networks: Cooperative Game Approach. 2018 renewable energies, power systems & green inclusive economy (REPS-GIE), pp. 1-6 (2018). https://doi.org/10.1109/REPSGIE.2018.8488865 Neely, MM.J., Saber Tehrani, A., Dimakis, A.G.: Efficient Algorithms for Renewable Energy Allocation to Delay Tolerant Consumers. 2010 First IEEE international conference on smart grid communications, pp. 549-554 (2010). https://doi.org/10.1109/SMARTGRID.2010.5621993 Bai, L., Crisostomiy, E.: Distribution Loss Allocation in Peer-to-Peer Energy Trading in a Network of Microgrids. 2020 IEEE power & energy society general meeting (PESGM), pp. 1-5 (2020). https://doi.org/10.1109/PESGM41954.2020.9281382 Narayanan, A., Nardelli, P.: Profit Allocation in Renewables Based Community Microgrids with Aggregation and Self-Sufficiency.: IEEE 31st annual international symposium on personal. Indoor and mobile radio communications 2020, 1–6 (2020). https://doi.org/10.1109/PIMRC48278.2020.9217165 Gjorgievski, Vladimir Z., Cundeva, Snezana, Markovska, Natasa, Georghiou, George E.: Virtual net-billing: a fair energy sharing method for collective self-consumption. Part B Energy (2022). https://doi.org/10.1016/j.energy.2022.124246 Zhou, Y., Tan, M., Li, S., Wang, R.: A cooperative energy trading model for multi-energy microgrid cluster in an active distribution network. 2019IEEE 3rd conference on energy internet and energy system integration (EI2) pp. 625-630 (2019). https://doi.org/10.1109/EI247390.2019.9062011 Bai, L., Thomopulos, D., & Crisostomi, E.: Preference-based energy exchange in a network of microgrids (2019). https://doi.org/10.48550/arXiv.1906.11070 Amin, W., et al.: Consumers’ preference based optimal price determination model for p2p energy trading. Electr. Power Syst. Res. 187, 106488 (2020). https://doi.org/10.1016/j.epsr.2020.106488 Dukovska, I., Paterakis, N.G., Slootweg, H.J.G.: Local Energy Exchange Considering Heterogeneous Prosumer Preferences. 2018 International conference on smart energy systems and technologies (SEST), pp. 1-6 (2018). https://doi.org/10.1109/SEST.2018.8495865 Morstyn, T., McCulloch, M.D.: Multiclass energy management for peer to- peer energy trading driven by prosumer preferences. IEEE Trans. Power Syst. 34(5), 4005–4014 (2019). https://doi.org/10.1109/TPWRS.2018.2834472 Hahnel, U.J., Herberz, M., Pena-Bello, A., Parra, D., Brosch, T.: Becoming prosumer: revealing trading preferences and decision-making strategies in peer-to-peer energy communities. Energy Policy 137, 111098 (2020). https://doi.org/10.1016/j.enpol.2019.111098 Zerka, A., Ouassaid, M., Maaroufi, M., Rabeh, R.: Energy Exchange Management in Smart Grids Using a Knapsack Problem Inspired Approach 2022 IEEE 21st mediterranean electrotechnical conference (MELECON), pp. 1034-1039 (2022). https://doi.org/10.1109/MELECON53508.2022.9842885 Sánchez, M., Cruz-Duarte, J.M., Ortíz-Bayliss, J.C., Ceballos, H., Terashima-Marin, H., Amaya, I.: A systematic review of hyper-heuristics on combinatorial optimization problems. IEEE Access 8, 128068–128095 (2020). https://doi.org/10.1109/ACCESS.2020.3009318 Ezugwu, A.E., Pillay, V., Hirasen, D., Sivanarain, K., Govender, M.: A comparative study of meta-heuristic optimization algorithms for 0–1 Knapsack problem: some initial results. IEEE Access 7, 43979–44001 (2019). https://doi.org/10.1109/ACCESS.2019.2908489 Erel, Segal-Halevi.: Fairly Dividing a Cake after Some Parts Were Burnt in the Oven. MAS (2018). arXiv:1704.00726. https://doi.org/10.48550/arXiv.1704.00726 Legut, J.: Simple fair division of a square. J. Math. Econ. 86, 35–40 (2020). https://doi.org/10.1016/j.jmateco.2019.11.001 Bertsimas, D., Farias, V., Trichakis, N.: The Price of Fairness. Oper. Res. 59, 17–31 (2011). https://doi.org/10.1287/opre.1100.0865 Forouzan, A.R., Shahtalebi, K.: Price of fairness in digital subscriber line systems using dynamic spectrum management. IEEE Trans. Commun. 69(5), 2851–2862 (2021). https://doi.org/10.1109/TCOMM.2021.3053614 Ortega, J., Segal-Halevi, E.: Obvious manipulations in cake-cutting. Soc. Choice Welf. (2022). https://doi.org/10.1007/s00355-022-01416-4 Rothe, Jörg.: Economics and Computation: An introduction to algorithmic game theory. Computational social choice, and fair division. (2016). https://doi.org/10.1007/978-3-662-47904-9 Robertson, Jack, Webb, William: Cake-Cutting algorithms: be fair if you can. A. K. Peters, Natick, Massachusetts 78-1-56881-076-8. LCCN 97041258. OL 2730675W (1998) Jain, K., Dhabu, M., Kakde, O., Funde, N.: Completely fair energy scheduling mechanism in a smart distributed multi-microgrid system. J. King Saud Univ. Comput. Inf. Sci. (2021). https://doi.org/10.1016/j.jksuci.2021.08.002 Funde NA, Dhabu MM, Deshpande PS, Patne NR,: SF-OEAP starvation-free optimal energy allocation policy in a smart distributed multimicrogrid system. IEEE Trans. Ind. Inf. 14(11), 4873–4883 (2018). https://doi.org/10.1109/TII.2018.2810816