Energy-efficient recovery of fermented butyric acid using octyl acetate extraction

Hyeon Woo Oh1, Seong Chan Lee1, Hee Chul Woo1, Young Han Kim1
1Department of Chemical Engineering, Pukyong National University 365 Shinsun-ro, Nam-gu, Busan 48547, South Korea

Tóm tắt

Abstract Background

A butyric acid recovery process using octyl acetate is proposed, and the design details of the extraction and subsequent distillation processes were investigated. Ternary equilibrium data for the extractor design were derived from molecular simulations and experimental measurements.

Results

A new procedure for estimating the thermodynamic parameters was introduced to determine the effect of the parameters on extractor design by comparison with previously reported parameters. Using the proposed recovery process with the newly estimated thermodynamic model, 99.8% butyric acid was recovered from the fermentation broth at a recovery rate of 99%. The energy demand for the proposed process was found to be lower than the average demand for several reported butyric acid recovery processes.

Conclusions

The investment cost is projected to be lower than that of other butyric acid processes due to the high efficiency of extraction solvent. The recovery cost of butyric acid was comparable to its selling price.

Từ khóa


Tài liệu tham khảo

Ning P, Yang GF, Hu LH, Sun JX, Shi LN, Zhou YH, et al. Recent advances in the valorization of plant biomass. Biotechnol Biofuels. 2021;14:102. https://doi.org/10.1186/s13068-021-01949-3.

Atasoy M, Owusu-Agyeman I, Plaza E, Cetecioglu Z. Bio-based volatile fatty acid production and recovery from waste streams: current status and future challenges. Bioresour Technol. 2018;268:773–86. https://doi.org/10.1016/j.biortech.2018.07.042.

Esteban-Gutiérrez M, Garcia-Aguirre J, Irizar I, Aymerich E. From sewage sludge and agri-food waste to VFA: individual acid production potential and up-scaling. Waste Manage. 2018;77:203–12. https://doi.org/10.1016/j.wasman.2018.05.027.

Reyhanitash E, Brouwer T, Kersten SRA, van den Ham AGJ, Schuur B. Liquid–liquid extraction-based process concepts for recovery of carboxylic acids from aqueous streams evaluated for dilute streams. Chem Eng Res Des. 2018;137:510–33. https://doi.org/10.1016/j.cherd.2018.07.038.

Chen HD, Cai D, Chen CJ, Wang JH, Qin PY, Tan TW. Novel distillation process for effective and stable separation of high-concentration acetone-butanol-ethanol mixture from fermentation-pervaporation integration process. Biotechnol Biofuels. 2018;11:286. https://doi.org/10.1186/s13068-018-1284-8.

Lee SC, Oh HW, Woo HC, Kim YH. Energy-efficient bioethanol recovery process using deep eutectic solvent as entrainer. Biomass Convers Biorefinery. 2021. https://doi.org/10.1007/s13399-021-02213-2.

Nhien LC, Long NVD, Kim S, Lee M. Techno-economic assessment of hybrid extraction and distillation processes for furfural production from lignocellulosic biomass. Biotechnol Biofuels. 2017;10:81. https://doi.org/10.1186/s13068-017-0767-3.

Harvianto GR, Haider J, Hong J, Long NVD, Shim JJ, Cho MH, et al. Purification of 2,3-butanediol from fermentation broth: process development and techno-economic analysis. Biotechnol Biofuels. 2018;11:18. https://doi.org/10.1186/s13068-018-1013-3.

Woo HC, Kim YH. Eco-efficient recovery of bio-based volatile C2–6 fatty acids. Biotechnol Biofuels. 2019;12:92. https://doi.org/10.1186/s13068-019-1433-8.

Lee SC, Woo HC, Kim YH. Energy-efficient recovery process of 2,3-butanediol using 2-heptanol extraction. Chem Eng Process. 2021;160: 108286. https://doi.org/10.1016/j.cep.2020.108286.

Lee SC, Woo HC, Kim YH. Energy-efficient ethanol recovery process using 2-methyl pentanol extraction. Fuel. 2022;310: 122393. https://doi.org/10.1016/j.fuel.2021.122393.

Li QZ, Jiang XL, Feng XJ, Wang JM, Sun C, Zhang HB, et al. Recovery processes of organic acids from fermentation broths in the biomass-based industry. J Microbiol Biotechnol. 2016;26:1–8. https://doi.org/10.4014/jmb.1505.05049.

Petersen AM, Franco T, Gorgens JF. Comparison of recovery of volatile fatty acids and mixed ketones as alternative downstream processes for acetogenisis fermentation. Biofuels Bioprod Biorefining. 2018;12:882–98. https://doi.org/10.1002/bbb.1901.

Song D, Yang J-H, Lee C-J. Conceptual design of water separation process inglycerol-based acrylic acid production. Chem Eng Res Des. 2020;156:324–32. https://doi.org/10.1016/j.cherd.2020.01.036.

Oh HW, Lee SC, Woo HC, Kim YH. Energy-efficient biobutanol recovery process using 1-heptanol extraction. Chem Eng Technol. 2021;44:2316–26. https://doi.org/10.1002/ceat.202100154.

Berg L. Selecting the agent for distillation. Chem Eng Prog. 1969;65:52–7.

Bastos JC, Soares ME, Medina AG. Selection of solvents for extractive distillation. A data bank for activity coefficients at infinite dilution. Ind Eng Chem Proc Des Dev. 1985;24:420–6.

Woo HC, Kim YH. Solvent selection for extractive distillation using mol simul. AIChE J. 2019;65:16665. https://doi.org/10.1002/aic.16665.

Alkaya E, Kaptan S, Ozkan L, Uludag-Demirer S, Demirer GN. Recovery of acids from anaerobic acidification broth by liquid–liquid extraction. Chemosphere. 2009;77:1137–42. https://doi.org/10.1016/j.chemosphere.2009.08.027.

Reyhanitash E, Zaalberg B, Kersten SRA, Schuur B. Extraction of volatile fatty acids from fermented wastewater. Sep Purif Technol. 2016;161:61–8. https://doi.org/10.1016/j.seppur.2016.01.037.

Blahušiak M, Schlosser Š, Marták J. Extraction of butyric acid with a solvent containing ammonium ionic liquid. Sep Purif Technol. 2013;119:102–11. https://doi.org/10.1016/j.seppur.2013.09.005.

Rocha MAA, Raeissi S, Hage P, Weggemans WMA, van Spronsen J, Peters CJ, et al. Recovery of volatile fatty acids from water using medium-chain fatty acids and a cosolvent. Chem Eng Sci. 2017;165:74–80. https://doi.org/10.1016/j.ces.2017.02.014.

Kannengiesser J, Sakaguchi-Soder K, Mrukwia T, Jager J, Schebek L. Extraction of medium chain fatty acids from organic municipal waste and subsequent production of bio-based fuels. Waste Manage. 2016;47:78–83. https://doi.org/10.1016/j.wasman.2015.05.030.

Bekatorou A, Dima A, Tsafrakidou P, Boura K, Lappa K, Kandylis P, et al. Downstream extraction process development for recovery of organic acids from a fermentation broth. Bioresour Technol. 2016;220:34–7. https://doi.org/10.1016/j.biortech.2016.08.039.

Renon H, Prausnitz JM. Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J. 1968;14:135–44.

Aspentech. How can I use NRTL for multicomponent mixture when binary interaction parameters are missing for some pairs? Aspentech Inc. https://esupport.aspentech.com/S_Article?id=000095558. Accessed 12 Dec 2021.

Carlson EC. Don’t gamble with physical properties for simulations. Chem Eng Prog. 1996;92:35–46.

Casás LM, Orge B, Ferreira O. Liquid–liquid equilibria of mixtures containing methyl acetate + methanol +hexane or heptane. J Chem Eng Data. 2008;53:89–93.

Ghanadzadeh H, Ghanadzadeh A, Asgharzadeh S, Moghadam M. Measurement and correlation of phase equilibrium data of the mixtures consisting of butyric acid, water, cyclohexanone at different temperatures. J Chem Thermodyn. 2012;47:288–94. https://doi.org/10.1016/j.jct.2011.11.001.

Gutierrez JP, Meindersma GW, de Haan AB. COSMO-RS-based ionic-liquid selection for extractive distillation processes. Ind Eng Chem Res. 2012;51:11518–29. https://doi.org/10.1021/ie301506n.

Fang J, Zhao R, Su WY, Li CL, Liu J, Li B. A molecular design method based on the COSMO-SAC model for solvent selection in ionic liquid extractive distillation. AIChE J. 2016;62:2853–69. https://doi.org/10.1002/aic.15247.

Dubbeldam D, Snurr RQ. Recent developments in the molecular modeling of diffusion in nanoporous materials. Mol Simul. 2007;33:305–25. https://doi.org/10.1080/08927020601156418.

Dubbeldam D, Calero S, Ellis DE, Snurr RQ. RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Mol Simul. 2016;42:81–101. https://doi.org/10.1080/08927022.2015.1010082.

Rai N, Siepmann JI. Transferable potentials for phase equilibria. 10. Explicit-hydrogen description of substituted benzenes and polycyclic aromatic compounds. J Phys Chem B. 2013;117:273–88. https://doi.org/10.1021/jp307328x.

Dubbeldam D, Calero S, Ellis DE, Snurr RQ. RASPA 2.0: molecular software package for adsorption and diffusion in (flexible) nanoporous materials. https://github.com/numat/RASPA2/blob/master/Docs/raspa.pdf. Accessed 12 Dec 2021.

Seader JD, Henley EJ. Separation process principles. New York: Wiley; 1998.

Zuo CC, Li YP, Li CS, Cao SS, Yao HY, Zhang SJ. Thermodynamics and separation process for quaternary acrylic systems. AIChE J. 2016;62:228–40. https://doi.org/10.1002/aic.15015.

Shen WC, Chien IL. Energy-efficient design of extraction-distillation process for 2,2,3,3-tetrafluoro-1-propanol/water separation with thermodynamically verified liquid–liquid and vapor-liquid equilibrium behaviors. Sep Purif Technol. 2020;238: 116447. https://doi.org/10.1016/j.seppur.2019.116447.

Lucia A, Padmanabhan L, Venkataraman S. Multiphase equilibrium flash calculations. Comput Chem Eng. 2000;24:2557–69. https://doi.org/10.1016/s0098-1354(00)00563-9.

Denes F, Lang P, Lang-Lazi M. Liquid–liquid–liquid equilibrium calculations. IChemE Symp Ser. 2006;152:877–90.

Mitsos A, Bollas GM, Barton PI. Bilevel optimization formulation for parameter estimation in liquid–liquid phase equilibrium problems. Chem Eng Sci. 2009;64:548–59. https://doi.org/10.1016/j.ces.2008.09.034.

Michelsen ML. The isothermal flash problem. Part II. Phase-split calculation. Fluid Ph Equilibria. 1982;9:2l–40.

Li Z, Mumford KA, Smith KH, Chen J, Wang Y, Stevens GW. Solution structure of isoactivity equations for liquid–liquid equilibrium calculations using the nonrandom two-liquid model. Ind Eng Chem Res. 2016;55:2852–9. https://doi.org/10.1021/acs.iecr.5b04469.

Aspentech. The Flash3 liquid–liquid equilibrium is different in version 2006. Aspentech Inc. https://esupport.aspentech.com/S_Article?id=000081826. Accessed 12 Dec 2021.

Jiang L, Wanga J, Liang S, Wang X, Cen P, Xu Z. Butyric acid fermentation in a fibrous bed bioreactor with immobilized Clostridium tyrobutyricum from cane molasses. Bioresour Technol. 2009;100:3403–9. https://doi.org/10.1016/j.biortech.2009.02.032.

Wu ZT, Yang ST. Extractive fermentation for butyric acid production from glucose by Clostridium tyrobutyricum. Biotechnol Bioeng. 2003;82:93–102. https://doi.org/10.1002/bit.10542.

Jha AK, Li J, Yuan Y, Baral N, Ai B. A review on bio-butyric acid production and its optimization. Int J Agric Biol. 2014;16:1019–24.

Douglas JM. Conceptual design of chemical processes. New York: McGraw-Hill; 1988.

Turton R, Baille RC, Whiting WB, Shaeiwitz JA. Analysis, synthesis, and design of chemical processes. 2nd ed. Upper Saddle River: Prentice Hall; 2003.

Olujic Z, Sun L, de Rijke A, Jansens PJ. Conceptual design of an internally heat integrated propylene-propane splitter. Energy. 2006;31:3083–96. https://doi.org/10.1016/j.energy.2006.03.030.

Domingues L, Pinheiro CIC, Oliveira NMC. Economic comparison of a reactive distillation-based process with the conventional process for the production of ethyl tert-butyl ether (ETBE). Comput Cheml Eng. 2017;100:9–26. https://doi.org/10.1016/j.compchemeng.2017.01.008.

Kemp IC. Pinch analysis and process integration. 2nd ed. Burlington: Butterworth-Heinemann; 2007.

Fasahati P, Liu JJ. Impact of volatile fatty acid recovery on economics of ethanol production from brown algae via mixed alcohol synthesis. Chem Eng Res Des. 2015;98:107–22. https://doi.org/10.1016/j.cherd.2015.04.013.

Baroi GN, Gavala HN, Westermann P, Skiadas IV. Fermentative production of butyric acid from wheat straw: economic evaluation. Ind Crop Prod. 2017;104:68–80. https://doi.org/10.1016/j.indcrop.2017.04.008.

Aden A, Ruth M, Ibsen K, Jechura J, Neeves K, Sheehan J, et al. Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover. Boulder: National Renewable Energy Laboratory; 2002.

Offeman RD, Stephenson SK, Franqui D, Cline JL, Robertson GH, Orts WJ. Extraction of ethanol with higher alcohol solvents and their toxicity to yeast. Sep Purif Technol. 2008;63:444–51.

Offeman RD, Franqui-Espiet D, Cline JL, Robertson GH, Orts WJ. Extraction of ethanol with higher carboxylic acid solvents and their toxicity to yeast. Sep Purif Technol. 2010;72:180–5. https://doi.org/10.1016/j.seppur.2010.02.004.

Lemos DA, Sonegoa JLS, Boschierob MV, Araujob ECC, Cruza AJG, Badino AC. Selection and application of nontoxic solvents in extractive ethanol fermentation. Biochem Eng J. 2017;127:128–35. https://doi.org/10.1016/j.bej.2017.08.003.

Murphy TK, Blanch HW, Wilke CR. Water recycling in extractive fermentation. Process Biochem. 1982;17:6–9.