Energy dispersive X-ray fluorescence spectroscopy/Monte Carlo simulation approach for the non-destructive analysis of corrosion patina-bearing alloys in archaeological bronzes: The case of the bowl from the Fareleira 3 site (Vidigueira, South Portugal)
Tài liệu tham khảo
Guerra, 1998, Analysis of archaeological metals. The place of XRF and PIXE in the determination of technology and provenance, X-Ray Spectrom., 27, 73, 10.1002/(SICI)1097-4539(199803/04)27:2<73::AID-XRS249>3.0.CO;2-5
Figueiredo, 2013, Characterisation of a proto-historic bronze collection by micro-EDXRF, Nucl. Inst. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms, 296, 26, 10.1016/j.nimb.2012.11.019
Schiavon, 2013, Iron-age bronze statuettes in southern Portugal: combining archaeological data with EDXRF and BSEM+EDS to assess provenance and production technology, Appl. Phys. A, 113, 865, 10.1007/s00339-013-7747-7
Celauro, 2014, Combining chemical data with GIS and PCA to investigate Phoenician–Punic Cu-metallurgy, Appl. Phys., 114, 711, 10.1007/s00339-013-8179-0
Cardeira, 2014
Mantler, 1980, X-ray fluorescence analysis without standards, X-Ray Spectrom., 9, 146, 10.1002/xrs.1300090312
Kovács, 1986, Application of an empirical correction method for the x-ray fluorescence analysis of copper alloys, X-Ray Spectrom., 15, 221, 10.1002/xrs.1300150313
Brunetti, 2014, A new Monte Carlo code for simulation of the effect of irregular surfaces on X-ray spectra, Spectrochim. Acta Part B, 94–95, 58, 10.1016/j.sab.2014.03.007
Vincze, 1993, A general Monte Carlo simulation of energy-dispersive X-ray fluorescence spectrometers — I. Unpolarized radiation, homogeneous samples, Spectrochim. Acta Part B, 48, 553, 10.1016/0584-8547(93)80060-8
Schoonjans, 2012, A general Monte Carlo simulation of energy-dispersive X-ray fluorescence spectrometers — part 5. Polarized radiation, stratified samples, cascade effects, M-lines, Spectrochim. Acta Part B, 70, 10, 10.1016/j.sab.2012.03.011
Bottigli, 2004, Voxel-based Monte Carlo simulation of X-ray imaging and spectroscopy experiments, Spectrochim. Acta B At. Spectrosc., 59, 1747, 10.1016/j.sab.2004.03.016
Golosio, 2014, Monte Carlo simulation of X-ray imaging and spectroscopy experiments using quadric geometry and variance reduction techniques, Comput. Phys. Commun., 185, 1044, 10.1016/j.cpc.2013.10.034
Brunetti, 2004, A library for X-ray–matter interaction cross sections for X-ray fluorescence applications, Spectrochim. Acta Part B, 59, 1725, 10.1016/j.sab.2004.03.014
Schoonjans, 2011, The Xraylib library for X-ray–matter interactions. Recent developments, Spectrochim. Acta Part B, 66, 776, 10.1016/j.sab.2011.09.011
Bonizzoni, 2006, Evaluation of effects of irregular shape on quantitative XRF analysis of metal objects, X-Ray Spectrom., 35, 390, 10.1002/xrs.926
Trojek, 2012, Reconstruction of the relief of an investigated object with scanning X-ray fluorescence microanalysis and Monte Carlo simulations of surface effects, Appl. Radiat. Isot., 70, 1206, 10.1016/j.apradiso.2011.11.012
Fitzgerald, 1998, The chemistry of copper patination, Corros. Sci., 39, 2029, 10.1016/S0010-938X(98)00093-6
de Cesareo, 2013, Multilayered samples reconstructed by measuring Ka/Kß or La/Lß X-ray intensity ratios by EDXRF, Nucl. Inst. Methods Phys. Res. Sect. B, 312, 15, 10.1016/j.nimb.2013.06.019
Matthaus, 1985
Jiménez Avila, 2002
Valério, 2012, A multianalytical approach to study the Phoenician bronze technology in the Iberian Peninsula — a view from Auinta do Almaraz, Mater. Charact., 67, 74, 10.1016/j.matchar.2012.02.020
Tylecote, 1986
Valério, 2013, The distinctive grave goods from Palhais (Beja, Portugal). New insights into the metallurgical evolution under Orientalizing influence in the southwestern end of Iberia, Trab. Prehist., 70, 361, 10.3989/tp.2013.12119