Energy and bandwidth-efficient channel access for local area machine-to-machine communication
Tóm tắt
Ticket Election Multiple Access (TEMA) is introduced for local machine-to-machine communication that is energy and bandwidth-efficient. TEMA is based on distributed elections held among nodes to gain interference-free access to the channel in either unicast or broadcast mode. Non-transmitting nodes can infer whether or not they are the intended receiver of a transmission and act accordingly to save energy, without the need for particular traffic patterns or explicit future transmission schedules.
TEMA is shown to be correct in the sense that the channel access schedules are collision-free at the intended receivers, and intended receivers are always in receiving state. An analytical model of the performance of the protocol is used to show that TEMA attains energy-efficiency and high channel utilization even under heavy traffic and high node density conditions. A simulation-based performance analysis validates the analytical results and shows that TEMA outperforms representatives of contention-based and interference-free protocols in terms of energy efficiency, network goodput, and channel access delay. More specifically, it reduces energy consumption to half of that of state-of-the-art distributed election-based protocols while providing up to 25% increase in goodput and up to 50% decrease in channel access delay.
Tài liệu tham khảo
Rajandekar, A., & Sikdar, B. (2015). A survey of MAC layer issues and protocols for machine-to-machine communications. IEEE Internet of Things Journal, 2(2), 175–186.
Verma, P. K., Verma, R., Prakash, A., Agrawal, A., Naik, K., Tripathi, R., et al. (2016). Machine-to-machine (M2M) communications: A survey. Journal of Network and Computer Applications, 66, 83–105.
Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645–1660.
Lee, J., Bagheri, B., & Kao, H.-A. (2015). A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manufacturing Letters, 3, 18–23.
Zhang, Y., Yu, R., Nekovee, M., Liu, Y., Xie, S., & Gjessing, S. (2012). Cognitive machine-to-machine communications: Visions and potentials for the smart grid. IEEE Network, 26(3), 6–13.
Islam, S. R., Kwak, D., Kabir, M. H., Hossain, M., & Kwak, K.-S. (2015). The internet of things for health care: A comprehensive survey. IEEE Access, 3, 678–708.
Chen, S., Xu, H., Liu, D., Hu, B., & Wang, H. (2014). A vision of IoT: Applications, challenges, and opportunities with china perspective. IEEE Internet of Things journal, 1(4), 349–359.
Lazarescu, M. T. (2013). Design of a WSN platform for long-term environmental monitoring for IoT applications. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 3(1), 45–54.
Zanella, A., Bui, N., Castellani, A., Vangelista, L., & Zorzi, M. (2014). Internet of things for smart cities. IEEE Internet of Things Journal, 1(1), 22–32.
Hussain, F., Anpalagan, A., & Vannithamby, R. (2017). Medium access control techniques in M2M communication: Survey and critical review. Transactions on Emerging Telecommunications Technologies, 28(1), e2869.
Islam, M., Taha, A.-E., & Akl, S. (2014). A survey of access management techniques in machine type communications. IEEE Communications Magazine, 52(4), 74–81.
Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys & Tutorials, 17(4), 2347–2376.
Chen, K.-C., & Lien, S.-Y. (2014). Machine-to-machine communications: Technologies and challenges. Ad Hoc Networks, 18, 3–23.
Ye, Q., & Zhuang, W. (2017). Distributed and adaptive medium access control for Internet-of-Things-enabled mobile networks. IEEE Internet of Things Journal, 4(2), 446–460.
Waldspurger, C. A., & Weihl, W. E. (1994). Lottery scheduling: Flexible proportional-share resource management. In Proceedings of the 1st USENIX conference on operating systems design and implementation, OSDI ’94. Berkeley, CA, USA: USENIX Association.
Ye, W., Heidemann, J., & Estrin, D. (2002). An energy-efficient MAC protocol for wireless sensor networks. In INFOCOM 2002. Twenty-first annual joint conference of the IEEE computer and communications societies. Proceedings (Vol. 3, pp. 1567–1576). IEEE.
Kim, D., Jung, J., Koo, Y., & Yi, Y. (2020). Bird-MAC: Energy-efficient MAC for quasi-periodic IoT applications by avoiding early wake-up. IEEE Transactions on Mobile Computing, 19, 788–802.
Rajendran, V., Obraczka, K., & Garcia-Luna-Aceves, J. J. (2003). Energy-efficient collision-free medium access control for wireless sensor networks. In Proceedings of the 1st international conference on embedded networked sensor systems, SenSys ’03, (New York, NY, USA) (pp. 181–192). ACM.
Rajendran, V., Garcia-Luna-Aveces, J. J., & Obraczka, K. (2005). Energy-efficient, application-aware medium access for sensor networks. In IEEE international conference on mobile adhoc and sensor systems conference, 2005 (pp. 8–630).
Ojo, M., Giordano, S., Portaluri, G., Adami, D., & Pagano, M. (2017). An energy efficient centralized scheduling scheme in tsch networks. In 2017 IEEE international conference on communications workshops (ICC workshops) (pp. 570–575). IEEE.
Demir, A. K., & Bilgili, S. (2019). DIVA: A distributed divergecast scheduling algorithm for IEEE 802.15. 4e TSCH networks. Wireless Networks, 25(2), 625–635.
Bao, L., & Garcia-Luna-Aceves, J. (2003). Distributed dynamic channel access scheduling for ad hoc networks. Journal of Parallel and Distributed Computing, 63(1), 3–14.
IEEE Standards Association. (2012). IEEE 802.11 2012.
Gummalla, A. C. V., & Limb, J. O. (2000). Wireless medium access control protocols. IEEE Communications Surveys & Tutorials, 3(2), 2–15.
Kumar, S., Raghavan, V. S., & Deng, J. (2006). Medium access control protocols for ad hoc wireless networks: A survey. Ad Hoc Networks, 4(3), 326–358.
Huang, P., Xiao, L., Soltani, S., Mutka, M. W., & Xi, N. (2013). The evolution of MAC protocols in wireless sensor networks: A survey. IEEE Communications Surveys & Tutorials, 15(1), 101–120.
Carrano, R. C., Passos, D., Magalhaes, L. C., & Albuquerque, C. V. (2014). Survey and taxonomy of duty cycling mechanisms in wireless sensor networks. IEEE Communications Surveys & Tutorials, 16(1), 181–194.
Abramson, N. (1970). THE ALOHA SYSTEM: Another alternative for computer communications. In Proceedings of the November 17–19, 1970, fall joint computer conference (pp. 281–285). ACM.
Roberts, L. G. (1975). ALOHA packet system with and without slots and capture. ACM SIGCOMM Computer Communication Review, 5(2), 28–42.
Kleinrock, L., & Tobagi, F. (1975). Packet switching in radio channels: Part I-Carrier sense multiple-access modes and their throughput-delay characteristics. IEEE Transactions on Communications, 23(12), 1400–1416.
Tobagi, F., & Kleinrock, L. (1975). Packet switching in radio channels: Part II-the hidden terminal problem in carrier sense multiple-access and the busy-tone solution. IEEE Transactions on Communications, 23(12), 1417–1433.
Karn, P., et al., (1990). MACA-a new channel access method for packet radio. In ARRL/CRRL Amateur radio 9th computer networking conference (Vol. 140, pp. 134–140).
Fullmer, C. L., & Garcia-Luna-Aceves, J. (1995). Floor acquisition multiple access (FAMA) for packet-radio networks. In ACM SIGCOMM computer communication review (Vol. 25, pp. 262–273). ACM
Crow, B. P., Widjaja, I., Kim, J. G., & Sakai, P. T. (1997). IEEE 802.11 wireless local area networks. IEEE Communications Magazine, 35(9), 116–126.
Calì, F., Conti, M., & Gregori, E. (2000). Dynamic tuning of the IEEE 802.11 protocol to achieve a theoretical throughput limit. IEEE/ACM Transactions on Networking (ToN), 8(6), 785–799.
Garcia-Luna-Aceves, J. (2017). Carrier-sense multiple access with collision avoidance and detection. In Proceedings of the 20th ACM international conference on modelling, analysis and simulation of wireless and mobile systems (pp. 53–61). ACM.
Sklar, B. (2001). Digital communications: fundamentals and applications., Prentice Hall communications engineering and emerging technologies series Upper Saddle River: Prentice-Hall.
Garcia-Luna-Aceves, J., & Menchaca-Mendez, R. (2012). STORM: A framework for integrated routing, scheduling, and traffic management in ad hoc networks. IEEE Transactions on Mobile Computing, 11(8), 1345–1357.
Lin, C., & Gerla, M. (1997). Asynchronous multimedia multihop wireless networks. In INFOCOM ’97. Sixteenth annual joint conference of the IEEE computer and communications societies. Driving the information revolution. Proceedings IEEE (Vol. 1, pp. 118–125).
Zhu, C., & Corson, M. S. (2001). A five-phase reservation protocol (FPRP) for mobile ad hoc networks. Wireless Networks, 7(4), 371–384.
Bao, L., & Garcia-Luna-Aceves, J. (2002). Hybrid channel access scheduling in ad hoc networks. In 10th IEEE international conference on network protocols, 2002. Proceedings (pp. 46–57).
Basagni, S., Conti, M., Giordano, S., & Stojmenovic, I. (2004). Mobile ad hoc networking, ch. 11 (p. 313). Hoboken: Wiley.
Roy, A., & Sarma, N. (2011). AEEMAC: Adaptive energy efficient MAC protocol for wireless sensor networks. In 2011 annual IEEE India conference (pp. 1–6).
Lee, H., & Lee, H. (2016). Modeling and analysis of an energy-efficient MAC protocol for wireless sensor networks. In 2016 international conference on information networking (ICOIN) (pp. 402–405).
Tavli, B., & Heinzelman, W. (2003). MH-TRACE: Multihop time reservation using adaptive control for energy efficiency. In Military communications conference, 2003. MILCOM ’03. 2003 IEEE (Vol. 2, pp. 1292–1297).
Wu, H., Zhu, C., La, R. J., Liu, X., & Zhang, Y. (2013). FASA: Accelerated S-ALOHA using access history for event-driven M2M communications. IEEE/ACM Transactions on Networking, 21(6), 1904–1917.
Liu, Y., Yuen, C., Chen, J., & Cao, X. (2013). A scalable hybrid MAC protocol for massive M2M networks. In Wireless communications and networking conference (WCNC), 2013 IEEE (pp. 250–255). IEEE.
Liu, Y., Yuen, C., Cao, X., Hassan, N. U., & Chen, J. (2014). Design of a scalable hybrid MAC protocol for heterogeneous M2M networks. IEEE Internet of Things Journal, 1(1), 99–111.
Azquez-Gallego, F., Alonso-Zárate, J., Balboteo, I., & Alonso, L. (2013). DPCF-M: A medium access control protocol for dense machine-to-machine area networks with dynamic gateways. In IEEE 14th workshop on signal processing advances in wireless communications (SPAWC), 2013 (pp. 490–494). IEEE.
Bakshi, A., Chen, L., Srinivasan, K., Koksal, C. E., & Eryilmaz, A. (2019). Emit: An efficient mac paradigm for the internet of things. IEEE/ACM Transactions on Networking, 27(4), 1572–1583.
IEEE Standard for Local and metropolitan area networks–Part 15.4. (2012). Low-rate wireless personal area networks (LR-WPANs) amendment 1: MAC sublayer. IEEE Std 802.15.4e-2012 (Amendment to IEEE Std 802.15.4-2011) (pp. 1–225).
IEEE Standard for Local and metropolitan area networks–Part 15.4. (2011). Low-rate wireless personal area networks (LR-WPANs). IEEE Std 802.15.4-2011 (Revision of IEEE Std 802.15.4-2006) (pp. 1–314).
Kharb, S., & Singhrova, A. (2019). A survey on network formation and scheduling algorithms for time slotted channel hopping in industrial networks. Journal of Network and Computer Applications, 126, 59–87.
Djukic, P., & Mohapatra, P. (2012). Soft-TDMAC: A software-based 802.11 overlay TDMA MAC with microsecond synchronization. IEEE Transactions on Mobile Computing, 11, 478–491.
Omar, H. A., Zhuang, W., & Li, L. (2013). VeMAC: A TDMA-based MAC protocol for reliable broadcast in VANETs. IEEE Transactions on Mobile Computing, 12(9), 1724–1736.
Jiang, S., Rao, J., He, D., Ling, X., & Ko, C. C. (2002). A simple distributed PRMA for MANETs. IEEE Transactions on Vehicular Technology, 51(2), 293–305.
Chang, T., Watteyne, T., Pister, K., & Wang, Q. (2015). Adaptive synchronization in multi-hop TSCH networks. Computer Networks, 76, 165–176.
Elsts, A., Duquennoy, S., Fafoutis, X., Oikonomou, G., Piechocki, R., & Craddock, I. (2016). Microsecond-accuracy time synchronization using the IEEE 802.15. 4 tsch protocol. In 2016 IEEE 41st conference on local computer networks workshops (LCN Workshops) (pp. 156–164). IEEE.
Gotzhein, R. (2020). Tick and time synchronization. In Real-time communication protocols for multi-hop ad-hoc networks (pp. 15–64). Cham: Springer. https://doi.org/10.1007/978-3-030-33319-5
Riley, G. F., & Henderson, T. R. (2010). Modeling and tools for network simulation, ch. the ns-3 network simulator (pp. 15–34). Berlin, Heidelberg: Springer.
Feeney, L., & Nilsson, M. (2001). Investigating the energy consumption of a wireless network interface in an ad hoc networking environment. In INFOCOM 2001. Twentieth annual joint conference of the IEEE computer and communications societies. Proceedings (Vol. 3, pp. 1548–1557). IEEE