Energy Stability for a Class of Semilinear Elliptic Problems
Tóm tắt
Từ khóa
Tài liệu tham khảo
Afonso, D.G., Iacopetti, A., Pacella, F.: Overdetermined problems and relative Cheeger sets in unbounded domains. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 34(2), 531–546 (2023)
Alkhutov, Y., Maz’ya, V.G.: $${L}^{1, p}$$-coercivity and estimates of the Green function of the Neumann problem in a convex domain. J. Math. Sci. 196 (2014)
Amadori, A.L., Gladiali, F.: On a singular eigenvalue problem and its applications in computing the Morse index of solutions to semilinear PDEs. Nonlinear Anal.: Real World Appl. 55, 103–133 (2020)
Ambrosetti, A., Malchiodi, A.: Nonlinear Analysis and Semilinear Elliptic Problems. Cambridge University Press, Cambridge (2007)
Baer, E., Figalli, A.: Characterization of isoperimetric sets inside almost-convex cones. Discrete Contin. Dyn. Syst.—A 37 (2017)
Cabré, X., Ros-Oton, X., Serra, J.: Sharp isoperimetric inequalities via the ABP method. J. Eur. Math. Soc. 18(12), 2971–2998 (2016)
Ciraolo, G., Pacella, F., Polvara, C.: Symmetry breaking and instability for semilinear elliptic equations in spherical sectors and cones. arXiv:2305.10176v1 (2023)
Damascelli, L., Grossi, M., Pacella, F.: Qualitative properties of positive solutions of semilinear elliptic equations in symmetric domains via the maximum principle. Ann. Inst. Henri Poincarè, Anal. Non Linéaire 16, 631–652 (1999)
Damascelli, L., Pacella, F.: Morse Index of Solutions of Nonlinear Elliptic Equations. De Gruyter (2019)
Dancer, E.N., Gladiali, F., Grossi, M.: On the Hardy-Sobolev equation. In: Proceedings of the Royal Society of Edinburgh (2017)
De Marchis, F., Ianni, I., Pacella, F.: A morse index formula for radial solutions of Lane-Emden problems. Adv. Math. 322, 682–737 (2017)
Escobar, J.F.: Uniqueness theorems on conformal deformation of metrics, Sobolev inequalities, and an eigenvalue estimate. Commun. Pure Appl. Math. 43 (1990)
Fall, M.M., Minlend, I.A., Weth, T.: Unbounded periodic solutions to Serrin’s overdetermined boundary value problem. Arch. Ration. Mech. Anal. 223(2), 737–759 (2017)
Figalli, A., Indrei, E.: A sharp stability result for the relative isoperimetric inequality inside convex cones. J. Geom. Anal. 23(2), 938–969 (2013)
Gidas, B., Ni, W.-M., Nirenberg, L.: Symmetry and related properties via the maximum principle. Commun. Math. Phys. 68, 209–243 (1979)
Iacopetti, A., Pacella, F., Weth, T.: Existence of nonradial domains for overdetermined and isoperimetric problems in nonconvex cones. Arch. Ration. Mech. Anal. 245(2), 1005–1058 (2022)
Lions, P.-L., Pacella, F.: Isoperimetric inequalities for convex cones. Proc. Am. Math. Soc. 109(2), 477–477 (1990)
Ni, W.-M., Nussbaum, R.D.: Uniqueness and nonuniqueness for positive radial solutions of $${\Delta u} + f(u, r) = 0$$. Commun. Pure Appl. Math. XXXVII I, 67–108 (1985)
Pacella, F., Tralli, G.: Overdetermined problems and constant mean curvature surfaces in cones. Rev. Mat. Iberoam. 36, 841–867 (2020)
Pacella, F., Tralli, G.: Isoperimetric cones and minimal solutions of partial overdetermined problems. Publ. Mat. 65, 61–81 (2021)
Ritoré, M., Rosales, C.: Existence and characterization of regions minimizing perimeter under a volume constraint inside Euclidean cones. Trans. Am. Math. Soc. 356(11), 4601–4622 (2004)