Energy-Efficient One-Step Synthesis of a [Re,W]/α-Al2O3 Ceramic Catalytic Converter for the Dehydrogenation of Ethylbenzene to Styrene

Inorganic Materials: Applied Research - Tập 13 - Trang 1428-1434 - 2022
V. I. Uvarov1, R. D. Kapustin1, A. O. Kirillov1, A. S. Fedotov2, M. V. Tsodikov2
1Merzhanov Institute of Structural Macrokinetics and Materials Science Russian Academy of Sciences, Chernogolovka, Russia
2Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia

Tóm tắt

A porous ceramic catalytic converter was synthesized on the basis of a coarse α-Al2O3 powder filler using ultrafine strengthening binders of the MgO + SiC + SiO2 composition and catalytically active Re2O7 and WO3 components (up to 4 wt %). Double-sided compression of the starting mixture under a pressure from 70 to 90 MPa followed by sintering of the samples at temperatures from 1200 to 1400°C was applied. The synthesized ceramic catalytic converters possessed an open porosity of about 40% and a pore size of 0.5 to 1.5 μm. The styrene selectivity of about 30% and the productivity up to 30 g h–1 dm–3 in the temperature range from 600 to 700°С were experimentally achieved. The degree of catalyst carbonization within the experimental time (6 h) did not exceed 0.31 wt %. The scientific principles of a one-step technology for the synthesis of a porous ceramic with simultaneous imparting of catalytic properties thereto were developed. The obtained ceramic catalytic converters of the [Re,W]/α-Al2O3 composition can produce styrene with a high efficiency in a wide temperature range.

Tài liệu tham khảo

http://www.cpchem.com/bl/aromatics/en-us/Pages/StyreneMonomer.aspx https://www.businesswire.com/news/home/20181126005427/en/Global-Styrene-Market–Forecast-2023-Expected Chen, S.-S., Styrene, in Van Nostrand’s Encyclopedia of Chemistry, Considine, G.D., Ed., Hoboken, NJ: Wiley–Interscience, 2005. https://doi.org/10.1002/0471740039.vec2401 Miller, R.R., Newhook, R., and Poole, A., Styrene production, use, and human exposure, Crit. Rev. Toxicol., 1994, vol. 24, pp. s1–s10.https://doi.org/10.3109/10408449409020137 Shelepova, E.V., Vedyagin, A.A., Mishakov, I.V., and Noskov, A.S., Modeling of ethylbenzene dehydrogenation in catalytic membrane reactor with porous membrane, Catal. Sustainable Energy, 2014, vol. 2, pp. 1–9.https://doi.org/10.2478/cse-2014-0001 Shelepova, E.V. and Vedyagin, A.A., Intensification of the dehydrogenation process of different hydrocarbons in a catalytic membrane reactor, Chem. Eng. Process., 2020, vol. 155, art. ID 108072. https://doi.org/10.1016/j.cep.2020.108072 Bogdanova, O.K., Shcheglova, A.P., Balandin, A.A., and Belomestnykh, I.P., Catalytic dehydrogenation of ethylbenzene to styrene, Pet. Chem., 1962, vol. 1, pp. 120–127. https://doi.org/10.1016/0031-6458(62)90062-X Liu, H., Diao, J., Wang, Q., Gu, S., Chen, T., Miao, C., Yang, W., and Su, D., A nanodiamond/CNT–SiC monolith as a novel metal free catalyst for ethylbenzene direct dehydrogenation to styrene, Chem. Commun., 2014, vol. 50, pp. 7810–7812. https://doi.org/10.1039/C4CC01693A Diao, J., Feng, Z., Huang, R., Liu, H., Hamid, S., and Su, D.S., Selective and stable ethylbenzene dehydrogenation to styrene over nanodiamonds under oxygen-lean conditions, ChemSusChem, 2016, vol. 9, pp. 662–666. https://doi.org/10.1002/cssc.201501516 Zhang, J., Deng, Y., Cai, X., et al., Tin-assisted fully exposed platinum clusters stabilized on defect-rich graphene for dehydrogenation reaction, ACS Catal., 2019, vol. 9, pp. 5998–6005. https://doi.org/10.1021/acscatal.9b00601 Lavrenov, A.V., Saifulin, L.F., Buluchevskii, E.A., and Bogdanets, E.N., Propylene production technology: Today and tomorrow, Catal. Ind., 2015, vol. 7, pp. 175–187. https://doi.org/10.1134/S2070050415030083 Kurchatov, I.M., Laguntsov, N.I., Tsodikov, M.V., Fedotov, A.S., and Moiseev, I.I., The nature of permeability anisotropy and catalytic activity, Kinet. Catal., 2008, vol. 49, pp. 121–126. https://doi.org/10.1134/S0023158408010151 Fedotov, A.S., Konstantinov, G.I., Uvarov, V.I., Tsodikov, M.V., Paul, S., Heyte, S., Simon, P., and Dumeignil, F., The production of 1,3-butadiene from bio-1-butanol over Re-W/alpha-Al2O3 porous ceramic converter, Catal. Commun., 2019, vol. 128, art. ID 105714. https://doi.org/10.1016/j.catcom.2019.105714 Meson, E.A., Evans, R.B., and Watson, G.M., Gaseous diffusion in porous media. III. Thermal transpiration, J. Chem. Phys., 1963, vol. 38, pp. 1808–1826. https://aip.scitation.org/doi/abs/10.1063/1.1733880 Izrailevich, I.S. and Novikov, S.N., Experimental study of gas flow through fine-pored media in the pressure transition region, Dokl. Akad. Nauk SSSR, 1965, vol. 164, pp. 1263–1266. http://www.mathnet.ru/links/45cc466d96a08f86d086f8c53fcb88e0/dan31727.pdf Hu, L. and Wang, C.-A., Effect of sintering temperature on compressive strength of porous yttria-stabilized zirconia ceramics, Ceram. Int., 2010, vol. 36, no. 5, pp. 1697–1701. https://doi.org/10.1016/j.ceramint.2010.03.009 Klym, H., Hadzaman, I., and Shpotyuk, O., Influence of sintering temperature on pore structure and electrical properties of technologically modified MgO–Al2O3, Mater. Sci., 2015, vol. 21, pp. 92–95.https://doi.org/10.5755/j01.ms.21.1.5189 Yan, W., Li, N., Li, Y., Liu, G., Han, B., and Xu, J., Effect of particle size on microstructure and strength of porous spinel ceramics prepared by pore-forming in situ technique, Bull. Mater. Sci., 2011, vol. 34, pp. 1109–1112. https://doi.org/10.1007/s12034-011-0155-8 Uvarov, V.I., Alymov, M.I., Loryan, V.É., Kapustin, R.D., Fedotov, A.S., and Tsodikov, M.V., Development of a membrane for hydrocarbon dehydrogenation using high-temperature synthesis, Refract. Ind. Ceram., 2019, vol. 60, pp. 409–412. https://doi.org/10.1007/s11148-019-00377-z Teplyakov, V.V. and Tsodikov, M.V., Porous Inorganic Membrane Reactors in Simulation of Membrane Reactors, Basile, A. and Gallucci, F., Eds., New York: Nova Sci., 2009. Fedotov, A.S., Uvarov, V.I., Tsodikov, M.V., Paul, S., Simon, P., Marinova, M., and Dumeignil, F., Dehydrogenation of cumene to α-methylstyrene on [Re,W]/γ-Al2O3(K,Ce)/α-Al2O3 and [Fe,Cr]/γ-Al2O3(K,Ce)/α-Al2O3 porous ceramic catalytic converters, Pet. Chem., 2020, vol. 60, pp. 1268–1283. https://doi.org/10.1134/S0965544120110080 Uvarov, V.I., Loryan, V.É., Kapustin, R.D., Fedotov, A.S., Tsodikov, M.V., and Konstantinov, G.I., Using porous ceramic catalytic converters for dehydrogenation of propane in propylene, Glass Ceram., 2020, vol. 76, nos. 11–12. https://doi.org/10.1007/s10717-020-00216-5 Soe, K.M., Popova, N.A., and Lukin, E.S., Composite ceramics on the basis of silicon carbide with additives of aluminum oxide and eutectic in the system SiO2–MgO, Usp. Khim. Khim. Tekhnol., 2018, vol. 32, no. 2, pp. 120–121. Borsa, C.E., Ferreira, H.S., and Kiminami, R.H.G.A., Liquid phase sintering of Al2O3/SiC nanocomposites, J. Eur. Ceram. Soc., 1999, vol. 19, no. 5, pp. 615–621. https://doi.org/10.1016/S0955-2219(98)00252-0