Energy-Efficient Allocation of Real-Time Applications onto Single-ISA Heterogeneous Multi-Core Processors

Alexei Colin1, Arvind Kandhalu1, Ragunathan Rajkumar1
1Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

CVXPY (2013). A Python package for modeling convex optimization problems. http://code.google.com/p/cvxpy/ .

AlEnawy, T.A., & Aydin, H. (2005). Energy-aware task allocation for rate monotonic scheduling. In: RTAS.

Anderson, J., & Baruah, S. (2004). Energy-efficient synthesis of periodic task systems upon identical multiprocessor platforms. In: ICDCS.

Awan, M., & Petters, S. (2013). Energy aware partitioning of tasks onto a heterogeneous multi-core platform. In: RTAS.

Aydin, H., Melhem, R., Mosse, D., & Mejia-Alvarez, P. (2001). Dynamic and aggressive scheduling techniques for power-aware real-time systems. In: RTSS.

Aydin, H., & Yang, Q. (2003). Energy-aware partitioning for multiprocessor real-time systems. In: IPDPS.

BAE Systems (2000). RAD750 board hardware user’s manual.

Boyd, S., & Vandenberghe, L. (2004). Convex optimization. New York: Cambridge University Press.

Burcin, A. (2002). RAD750, BAE Systems. http://www.aero.org/conferences/mrqw/2002-papers/A_-Burcin.pdf .

Buss, M., Givargis, T., & Dutt, N. (2003). Exploring efficient operating points for voltage scaled embedded processor cores. In: RTSS.

Chen, J., & Thiele, L. (2008). Energy-Efficient task partition for periodic Real-Time tasks on platforms with dual processing elements. In: ICPADS.

Chen, J.J., & Kuo, C.F. (2007). Energy-efficient scheduling for real-time systems on dynamic voltage scaling (DVS) platforms. In: RTCSA.

Chu, E.T.H., & et al. (2009). An optimal solution for the heterogeneous multiprocessor single-level voltage-setup problem. TCAD, 28(11).

Colin, A., Kandhalu, A., & Rajkumar, R.R. (2014). Energy-efficient allocation of real-time applications onto heterogeneous processors. In: RTCSA.

Devadas, V., & Aydin, H. (2010). DFR-EDF: a unified energy management framework for Real-Time systems. In: RTAS.

Greenhalgh, P. (2011). Big.LITTLE processing with ARM Cortex-A15 & Cortex-A7.

Guthaus, M., & et al. (2001). MiBench: a free, commercially representative embedded benchmark suite. In: WWC.

Herbert, S., & Marculescu, D. (2007). Analysis of dynamic voltage/frequency scaling in CMPs. In: ISLPED.

Huang, T., Tsai, Y., & Chu, E. (2007). A near-optimal solution for the heterogeneous multi-processor single-level voltage setup problem. In: IPDPS.

Jejurikar, R., Pereira, C., & Gupta, R. (2004). Leakage aware dynamic voltage scaling for real-time embedded systems. In: DAC.

Kandhalu, A., & et al. (2011). Energy-aware partitioned fixed-priority scheduling for CMPs. In: RTCSA.

Leung, J.Y., & Whitehead, J. (1982). On the complexity of fixed-priority scheduling of periodic, real-time tasks. Performance Evaluation, 2(4), 237–250.

Li, D., & Wu, J. (2012). Energy-aware scheduling for frame-based tasks on heterogeneous multiprocessor platforms. In: ICPP.

Li, D., & Wu, J. (2013). Energy-aware scheduling on multiprocessor platforms. New York: Springer-Verlag.

Liu, C.L., & Layland, J.W. (1973). Scheduling algorithms for multiprogramming in a hard-real-time environment. Journal of the ACM, 20(1), 46–61.

Luo, J., & Jha, N. (2007). Power-efficient scheduling for heterogeneous distributed real-time embedded systems. CADICS, 26(6).

Miyoshi, A., Lefurgy, C., Van Hensbergen, E., Rajamony, R., & Rajkumar, R. (2002). Critical power slope: understanding the runtime effects of frequency scaling. In: Proceedings of the 16th international conference on Supercomputing, ICS ’02. doi: 10.1145/514191.514200 . (pp. 35–44). New York: ACM.

Pagani, S., & Chen, J. (2013). Energy efficient task partitioning based on the single frequency approximation scheme. In: RTSS.

Yang, C., & et al. (2009). An approximation scheme for energy-efficient scheduling of real-time tasks in heterogeneous multiprocessor systems. In: DATE.

Yu, Y., & Prasanna, V.K. (2003). Resource allocation for independent real-time tasks in heterogeneous systems for energy minimization. JISE, 19(3).