Endothelial dysfunction — A major mediator of diabetic vascular disease
Tóm tắt
Từ khóa
Tài liệu tham khảo
Vallance, 2001, Importance of asymmetrical dimethylarginine in cardiovascular risk, Lancet, 358, 2096, 10.1016/S0140-6736(01)07229-4
Bonetti, 2003, Endothelial dysfunction: a marker of atherosclerotic risk, Arterioscler. Thromb. Vasc. Biol., 23, 168, 10.1161/01.ATV.0000051384.43104.FC
Félétou, 2006, Endothelial dysfunction: a multifaceted disorder (the Wiggers award lecture), Am. J. Physiol. Heart Circ. Physiol., 291, H985, 10.1152/ajpheart.00292.2006
Moncada, 2006, Nitric oxide and the vascular endothelium, Handb. Exp. Pharmacol., 176, 213, 10.1007/3-540-32967-6_7
Félétou, 2011
Beny, 1987, Interaction of bradykinin and des-Arg9-bradykinin with isolated pig coronary arteries: mechanical and electrophysiological events, Regul. Pept., 17, 181, 10.1016/0167-0115(87)90061-9
Chen, 1988, Acetylcholine releases endothelium-derived hyperpolarizing factor and EDRF from rat blood vessels, Br. J. Pharmacol., 95, 1165, 10.1111/j.1476-5381.1988.tb11752.x
Palmer, 1987, Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor, Nature, 327, 524, 10.1038/327524a0
Ignarro, 1987, Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide, Proc. Natl. Acad. Sci. U. S. A., 84, 9265, 10.1073/pnas.84.24.9265
Moncada, 1976, An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation, Nature, 263, 663, 10.1038/263663a0
Yanagisawa, 1988, A novel potent vasoconstrictor peptide produced by vascular endothelial cells, Nature, 332, 411, 10.1038/332411a0
Endemann, 2004, Endothelial dysfunction, J. Am. Soc. Nephrol., 15, 1983, 10.1097/01.ASN.0000132474.50966.DA
Just, 2008, Reactive oxygen species participate in acute renal vasoconstrictor responses induced by ETA and ETB receptors, Am. J. Physiol. Renal Physiol., 294, F719, 10.1152/ajprenal.00506.2007
Duckers, 2001, Heme oxygenase-1 protects against vascular constriction and proliferation, Nat. Med., 7, 693, 10.1038/89068
Vallance, 2001, Endothelial function and nitric oxide: clinical relevance, Heart, 85, 342, 10.1136/heart.85.3.342
Boulanger, 1990, Release of endothelin from the porcine aorta: inhibition by endothelium-derived nitric oxide, J. Clin. Invest., 85, 587, 10.1172/JCI114477
Joannides, 1995, Nitric oxide is responsible for flow-dependent dilatation of human peripheral conduit arteries in vivo, Circulation, 91, 1314, 10.1161/01.CIR.91.5.1314
Wheatcroft, 2003, Pathophysiological implications of insulin resistance on vascular endothelial function, Diabet. Med., 20, 255, 10.1046/j.1464-5491.2003.00869.x
Datta, 2004, Red blood cell nitric oxide as an endocrine vasoregulator: a potential role in congestive heart failure, Circulation, 109, 1339, 10.1161/01.CIR.0000124450.07016.1D
Oemar, 1998, Reduced endothelial nitric oxide synthase expression and production in human atherosclerosis, Circulation, 97, 2494, 10.1161/01.CIR.97.25.2494
Dessy, 2010, The regulation of endothelial nitric oxide synthase by caveolin: a paradigm validated in vivo and shared by the ‘endothelium-derived hyperpolarizing factor’, Pflugers Arch., 459, 817, 10.1007/s00424-010-0815-3
Duran, 2010, The NO cascade, eNOS location, and microvascular permeability, Cardiovasc. Res., 87, 254, 10.1093/cvr/cvq139
Vásquez-Vivar, 1998, Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors, Proc. Natl. Acad. Sci. U. S. A., 95, 9220, 10.1073/pnas.95.16.9220
Antoniades, 2009, Association of plasma asymmetrical dimethylarginine (ADMA) with elevated vascular superoxide production and endothelial nitric oxide synthase uncoupling: implications for endothelial function in human atherosclerosis, Eur. Heart J., 30, 1142, 10.1093/eurheartj/ehp061
Chen, 2010, S-glutathionylation uncouples eNOS and regulates its cellular and vascular function, Nature, 468, 1115, 10.1038/nature09599
Muniyappa, 2007, Cardiovascular actions of insulin, Endocrine, 28, 463
Shinozaki, 1999, Abnormal biopterin metabolism is a major cause of impaired endothelium-dependent relaxation through nitric oxide/O2− imbalance in insulin-resistant rat aorta, Diabetes, 48, 2437, 10.2337/diabetes.48.12.2437
Cleland, 2000, Insulin action is associated with endothelial function in hypertension and type 2 diabetes, Hypertension, 35, 507, 10.1161/01.HYP.35.1.507
Vincent, 2003, Inhibiting NOS blocks microvascular recruitment and blunts muscle glucose uptake in response to insulin, Am. J. Physiol. Endocrinol. Metab., 285, E123, 10.1152/ajpendo.00021.2003
Lewis, 2007, Lack of the antioxidant enzyme glutathione peroxidase-1 accelerates atherosclerosis in diabetic apolipoprotein E-deficient mice, Circulation, 115, 2178, 10.1161/CIRCULATIONAHA.106.664250
Zhang, 2012, The link between metabolic abnormalities and endothelial dysfunction in type 2 diabetes: an update, Basic Res. Cardiol., 107, 237, 10.1007/s00395-011-0237-1
Valkonen, 2001, Risk of acute coronary events and serum concentration of asymmetrical dimethylarginine, Lancet, 358, 2127, 10.1016/S0140-6736(01)07184-7
Mittermayer, 2006, Asymmetric dimethylarginine predicts major adverse cardiovascular events in patients with advanced peripheral artery disease, Arterioscler. Thromb. Vasc. Biol., 26, 2536, 10.1161/01.ATV.0000242801.38419.48
Krzyzanowska, 2007, Asymmetric dimethylarginine predicts cardiovascular events in patients with type 2 diabetes, Diabetes Care, 30, 1834, 10.2337/dc07-0019
Lovren, 2010, Adropin is a novel regulator of endothelial function, Circulation, 122, S185, 10.1161/CIRCULATIONAHA.109.931782
Harrison, 1997, Endothelial function and oxidant stress, Clin. Cardiol., 20, 11, 10.1002/j.1932-8737.1997.tb00007.x
Behrendt, 2002, Endothelial function. From vascular biology to clinical applications, Am. J. Cardiol., 21, 40L, 10.1016/S0002-9149(02)02963-6
Wolin, 2010, Oxidant-redox regulation of pulmonary vascular responses to hypoxia and nitric oxide–cGMP signaling, Cardiol. Rev., 18, 89, 10.1097/CRD.0b013e3181c9f088
O'Donnell, 2001, Interactions between nitric oxide and lipid oxidation pathways: implications for vascular disease, Circ. Res., 88, 12, 10.1161/01.RES.88.1.12
Kojda, 1999, Interactions between NO and reactive oxygen species: pathophysiological importance in atherosclerosis, hypertension, diabetes and heart failure, Cardiovasc. Res., 43, 562, 10.1016/S0008-6363(99)00169-8
Egan, 2006, Eicosanoids and the vascular endothelium, Handb. Exp. Pharmacol., 176, 189, 10.1007/3-540-32967-6_6
Félétou, 1988, Endothelium-dependent hyperpolarization of canine coronary smooth muscle, Br. J. Pharmacol., 93, 515, 10.1111/j.1476-5381.1988.tb10306.x
Garland, 2011, EDHF: spreading the influence of the endothelium, Br. J. Pharmacol., 164, 839, 10.1111/j.1476-5381.2010.01148.x
Félétou, 2006, Endothelium-derived hyperpolarizing factor: where are we now?, Arterioscler. Thromb. Vasc. Biol., 26, 1215, 10.1161/01.ATV.0000217611.81085.c5
Shimokawa, 1996, The importance of the hyperpolarizing mechanism increases as the vessel size decreases in endothelium-dependent relaxations in rat mesenteric circulation, J. Cardiovasc. Pharmacol., 28, 703, 10.1097/00005344-199611000-00014
Kang, 2007, Novel nitric oxide synthase — dependent mechanism of vasorelaxation in small arteries from hypertensive rats, Hypertension, 49, 893, 10.1161/01.HYP.0000259669.40991.1e
Grgic, 2009, Endothelial Ca2+-activated K+ channels in normal and impaired EDHF-dilator responses—relevance to cardiovascular pathologies and drug discovery, Br. J. Pharmacol., 157, 509, 10.1111/j.1476-5381.2009.00132.x
Bräsen, 2007, Extracellular superoxide dismutase accelerates endothelial recovery and inhibits in-stent restenosis in stented atherosclerotic Watanabe heritable hyperlipidemic rabbit aorta, J. Am. Coll. Cardiol., 50, 2249, 10.1016/j.jacc.2007.08.038
Yang, 2004, Retardation of atherosclerosis by overexpression of catalase or both Cu/Zn-superoxide dismutase and catalase in mice lacking apolipoprotein E, Circ. Res., 95, 1075, 10.1161/01.RES.0000149564.49410.0d
Guns, 2008, Paraoxonase 1 gene transfer lowers vascular oxidative stress and improves vasomotor function in apolipoprotein E-deficient mice with pre-existing atherosclerosis, Br. J. Pharmacol., 153, 508, 10.1038/sj.bjp.0707585
Fleming, 2001, Endothelium-derived hyperpolarizing factor synthase (cytochrome P450 2C9) is a functionally significant source of reactive oxygen species in coronary arteries, Circ. Res., 88, 44, 10.1161/01.RES.88.1.44
Taddei, 2003, Mechanisms of endothelial dysfunction: clinical significance and preventive non-pharmacological therapeutic strategies, Curr. Pharm. Des., 9, 2385, 10.2174/1381612033453866
Laughlin, 2008, Importance of hemodynamic forces as signals for exercise-induced changes in endothelial cell phenotype, J. Appl. Physiol., 104, 588, 10.1152/japplphysiol.01096.2007
Cade, 2008, Diabetes-related microvascular and macrovascular diseases in the physical therapy setting, Phys. Ther., 88, 322, 10.2522/ptj.20080008
Addabbo, 2009, Mitochondria and reactive oxygen species, Hypertension, 53, 885, 10.1161/HYPERTENSIONAHA.109.130054
Hirose, 2010, Advanced glycation endproducts increase endothelial permeability through the RAGE/Rho signaling pathway, FEBS Lett., 584, 61, 10.1016/j.febslet.2009.11.082
Wan, 2010, Endogenously decreasing tissue n−6/n−3 fatty acid ratio reduces atherosclerotic lesions in apolipoprotein E-deficient mice by inhibiting systemic and vascular inflammation, Arterioscler. Thromb. Vasc. Biol., 30, 2487, 10.1161/ATVBAHA.110.210054
Versari, 2009, Endothelial dysfunction as a target for prevention of cardiovascular disease, Diabetes Care, 32, S314, 10.2337/dc09-S330
Grover-Páez, 2009, Endothelial dysfunction and cardiovascular risk factors, Diabetes Res. Clin. Pract., 84, 1, 10.1016/j.diabres.2008.12.013
Bhatti, 2010, Lp-PLA(2) as a marker of cardiovascular diseases, Curr. Atheroscler. Rep., 12, 140, 10.1007/s11883-010-0095-6
Beckman, 2002, Diabetes and atherosclerosis: epidemiology, pathophysiology, and management, JAMA, 15, 2570, 10.1001/jama.287.19.2570
Nesto, 2004, Correlation between cardiovascular disease and diabetes mellitus: current concepts, Am. J. Med., 116, 11S, 10.1016/j.amjmed.2003.10.016
Singh, 2010, Endothelial cell dysfunction, medial arterial calcification and osteoprotegerin in diabetes, Br. J. Diabetes Vasc. Dis., 10, 71, 10.1177/1474651409355453
Highlander, 2010, Current pharmacotherapeutic concepts for the treatment of cardiovascular disease in diabetics, Therap. Adv. Cardiovasc. Dis., 4, 43, 10.1177/1753944709354305
Juan, 2001, Adenovirus-mediated heme oxygenase-1 gene transfer inhibits the development of atherosclerosis in apolipoprotein E-deficient mice, Circulation, 104, 1519, 10.1161/hc3801.095663
Riccardo, 2009, Linking diabetes and atherosclerosis, Expert. Rev. Endocrinol. Metab., 4, 603, 10.1586/eem.09.46
Ceriello, 2010, Point: postprandial glucose levels are a clinically important treatment target, Diabetes Care, 33, 1905, 10.2337/dc10-0634
Grassi, 2012, Protective effects of flavanol-rich dark chocolate on endothelial function and wave reflection during acute hyperglycemia, Hypertension, 60, 827, 10.1161/HYPERTENSIONAHA.112.193995
Brownlee, 2001, Biochemistry and molecular cell biology of diabetic complications, Nature, 13, 813, 10.1038/414813a
Levonen, 2007, Nrf2 gene transfer induces antioxidant enzymes and suppresses smooth muscle cell growth in vitro and reduces oxidative stress in rabbit aorta in vivo, Arterioscler. Thromb. Vasc. Biol., 27, 741, 10.1161/01.ATV.0000258868.80079.4d
Milstien, 1999, Oxidation of tetrahydrobiopterin by peroxynitrite: implications for vascular endothelial function, Biochem. Biophys. Res. Commun., 263, 681, 10.1006/bbrc.1999.1422
Brownlee, 2005, The pathobiology of diabetes complications: a unifying mechanism, Diabetes, 54, 1615, 10.2337/diabetes.54.6.1615
Creager, 2003, Diabetes and vascular disease: pathophysiology, Clin. Consequences Med. Ther. I Circ., 108, 1527
D'Souza, 2009, Pathogenesis and pathophysiology of accelerated atherosclerosis in the diabetic heart, Mol. Cell. Biochem., 331, 89, 10.1007/s11010-009-0148-8
Velmurugan, 2013, Defective Nrf2-dependent redox signaling contributes to microvascular dysfunction in type 2 diabetes, Cardiovasc. Res., 10.1093/cvr/cvt125
Zhou, 2011, Repression of P66Shc expression by SIRT1 contributes to the prevention of hyperglycemia-induced endothelial dysfunction, Circ. Res., 109, 639, 10.1161/CIRCRESAHA.111.243592
Schmidt, 1999, Activation of receptor for advanced glycation end products: a mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis, Circ. Res., 84, 489, 10.1161/01.RES.84.5.489
Wautier, 2001, Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE, Am. J. Physiol. Endocrinol. Metab., 280, E685, 10.1152/ajpendo.2001.280.5.E685
Chavakis, 2004, RAGE (receptor for advanced glycation end products): a central player in the inflammatory response, Microbes Infect., 6, 1219, 10.1016/j.micinf.2004.08.004
Chakravarthy, 1998, Constitutive nitric oxide synthase expression in retinal vascular endothelial cells is suppressed by high glucose and advanced glycation end products, Diabetes, 47, 945, 10.2337/diabetes.47.6.945
Xu, 2003, Impairment of vascular endothelial nitric oxide synthase activity by advanced glycation end products, FASEB J., 17, 1289, 10.1096/fj.02-0490fje
Quehenberger, 2000, Endothelin 1 transcription is controlled by nuclear factor-kappaB in AGE-stimulated cultured endothelial cells, Diabetes, 49, 1561, 10.2337/diabetes.49.9.1561
Sena, 2012, Methylglyoxal promotes oxidative stress and endothelial dysfunction, Pharmacol. Res., 65, 497, 10.1016/j.phrs.2012.03.004
Potenza, 2009, Endothelial dysfunction in diabetes: from mechanisms to therapeutic targets, Curr. Med. Chem., 16, 94, 10.2174/092986709787002853
Reaven, 1988, Banting lecture 1988. Role of insulin resistance in human disease, Diabetes, 37, 1595, 10.2337/diab.37.12.1595
Avruch, 1998, Insulin signal transduction through protein kinase cascades, Mol. Cell. Biochem., 182, 31, 10.1023/A:1006823109415
Kim, 2006, Reciprocal relationships between insulin resistance and endothelial dysfunction: molecular and pathophysiological mechanisms, Circulation, 113, 1888, 10.1161/CIRCULATIONAHA.105.563213
Muniyappa, 2013, Roles of insulin resistance in endothelial dysfunction, Rev. Endocr. Metab. Disord., 14, 5, 10.1007/s11154-012-9229-1
Du, 2006, Insulin resistance reduces arterial prostacylcin synthase and eNOS activities by increasing endothelial fatty acid oxidation, J. Clin. Invest., 116, 1071, 10.1172/JCI23354
Giacco, 2010, Oxidative stress and diabetic complications, Circ. Res., 107, 1058, 10.1161/CIRCRESAHA.110.223545
Inoguchi, 2000, High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells, Diabetes, 49, 1939, 10.2337/diabetes.49.11.1939
Capurso, 2012, From excess adiposity to insulin resistance: the role of free fatty acids, Vascul. Pharmacol., 57, 91, 10.1016/j.vph.2012.05.003
Sharma, 2012, Targeting endothelial dysfunction in vascular complications associated with diabetes, Int. J. Vasc. Med., 2012, 750126
Laukkanen, 2002, Adenovirus-mediated extracellular superoxide dismutase gene therapy reduces neointima formation in balloon-denuded rabbit aorta, Circulation, 106, 1999, 10.1161/01.CIR.0000031331.05368.9D
Natali, 2006, Clustering of insulin resistance with vascular dysfunction and low-grade inflammation in type 2 diabetes, Diabetes, 55, 1133, 10.2337/diabetes.55.04.06.db05-1076
Kawashima, 2004, Dysfunction of endothelial nitric oxide synthase and atherosclerosis, Arterioscler. Thromb. Vasc. Biol., 24, 998, 10.1161/01.ATV.0000125114.88079.96
Dresner, 1999, Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity, J. Clin. Invest., 103, 253, 10.1172/JCI5001
Steinberg, 1997, Elevated circulating free fatty acid levels impair endothelium-dependent vasodilation, J. Clin. Invest., 100, 1230, 10.1172/JCI119636
Wang, 2006, Free fatty acids inhibit insulin signaling-stimulated endothelial nitric oxide synthase activation through upregulating PTEN or inhibiting Akt kinase, Diabetes, 55, 2301, 10.2337/db05-1574
Boden, 2005, Free fatty acids produce insulin resistance and activate the proinflammatory nuclear factor-kappaB pathway in rat liver, Diabetes, 54, 3458, 10.2337/diabetes.54.12.3458
Gao, 2004, Inhibition of insulin sensitivity by free fatty acids requires activation of multiple serine kinases in 3T3-L1 adipocytes, Mol. Endocrinol., 18, 2024, 10.1210/me.2003-0383
Jove, 2006, Palmitate induces tumor necrosis factor-alpha expression in C2C12 skeletal muscle cells by a mechanism involving protein kinase C and nuclear factor-kappaB activation, Endocrinology, 147, 552, 10.1210/en.2005-0440
Kim, 2005, Free fatty acid impairment of nitric oxide production in endothelial cells is mediated by IKKbeta, Arterioscler. Thromb. Vasc. Biol., 25, 989, 10.1161/01.ATV.0000160549.60980.a8
Naruse, 2006, Activation of vascular protein kinase C-beta inhibits Akt-dependent endothelial nitric oxide synthase function in obesity-associated insulin resistance, Diabetes, 55, 691, 10.2337/diabetes.55.03.06.db05-0771
Cai, 2000, Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress, Circ. Res., 87, 840, 10.1161/01.RES.87.10.840
Harrison, 2003, Role of oxidative stress in atherosclerosis, Am. J. Cardiol., 91, 7A, 10.1016/S0002-9149(02)03144-2
Schramm, 2012, Targeting NADPH oxidases in vascular pharmacology, Vasc. Pharmacol., 56, 216, 10.1016/j.vph.2012.02.012
Gray, 2013, NADPH oxidase 1 plays a key role in diabetes mellitus-accelerated atherosclerosis, Circulation, 127, 1888, 10.1161/CIRCULATIONAHA.112.132159
Lassegue, 2010, NADPH oxidases: functions and pathologies in the vasculature, Arterioscler. Thromb. Vasc. Biol., 30, 653, 10.1161/ATVBAHA.108.181610
Schroder, 2012, Nox4 is a protective reactive oxygen species generating vascular NADPH oxidase, Circ. Res., 110, 1217, 10.1161/CIRCRESAHA.112.267054
Chance, 1979, Hydroperoxide metabolism in mammalian organs, Physiol. Rev., 59, 527, 10.1152/physrev.1979.59.3.527
Jezek, 2005, Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism, Int. J. Biochem. Cell Biol., 37, 2478, 10.1016/j.biocel.2005.05.013
Turrens, 2003, Mitochondrial formation of reactive oxygen species, J. Physiol., 552, 335, 10.1113/jphysiol.2003.049478
Griendling, 1997, Angiotensin II signaling in vascular smooth muscle. New concepts, Hypertension, 29, 366, 10.1161/01.HYP.29.1.366
Ray, 2005, NADPH oxidase and endothelial cell function, Clin. Sci. (Lond.), 109, 217, 10.1042/CS20050067
Soccio, 2005, Oxidative stress and cardiovascular risk: the role of vascular NAD(P)H oxidase and its genetic variants, Eur. J. Clin. Invest., 35, 305, 10.1111/j.1365-2362.2005.01500.x
Suzuki, 1995, In vivo evidence for microvascular oxidative stress in spontaneously hypertensive rats. Hydroethidine microfluorography, Hypertension, 25, 1083, 10.1161/01.HYP.25.5.1083
De Keulenaer, 1998, Oscillatory and steady laminar shear stress differentially affect human endothelial redox state: role of a superoxide-producing NADH oxidase, Circ. Res., 82, 1094, 10.1161/01.RES.82.10.1094
Sukumar, 2013, Nox2 NADPH oxidase has a critical role in insulin resistance-related endothelial cell dysfunction, Diabetes, 62, 2130, 10.2337/db12-1294
Van Assche, 2011, Targeting vascular redox biology through antioxidant gene delivery: a historical view and current perspectives, Recent Pat. Cardiovasc. Drug Discov., 6, 89, 10.2174/157489011795933873
Marcantoni, 2012, Novel insights into the vasoprotective role of heme oxygenase-1, Int. J. Hypertens., 10.1155/2012/127910
Irvine, 2011, Chronic administration of the HNO donor Angeli's salt does not lead to tolerance, cross-tolerance, or endothelial dysfunction: comparison with GTN and DEA/NO, Antioxid. Redox Signal., 14, 1615, 10.1089/ars.2010.3269
Ramprasath, 2012, l-Arginine ameliorates cardiac left ventricular oxidative stress by upregulating eNOS and Nrf2 target genes in alloxan-induced hyperglycemic rats, Biochem. Biophys. Res. Commun., 428, 389, 10.1016/j.bbrc.2012.10.064
Frombaum, 2012, Antioxidant effects of resveratrol and other stilbene derivatives on oxidative stress and NO bioavailability: potential benefits to cardiovascular diseases, Biochimie, 94, 269, 10.1016/j.biochi.2011.11.001
Volti, 2011, Effect of silibinin on endothelial dysfunction and ADMA levels in obese diabetic mice, Cardiovasc. Diabetol., 10
Kelley, 1994, Impaired free fatty acid utilization by skeletal muscle in non-insulin dependent diabetes mellitus, J. Clin. Invest., 94, 2349, 10.1172/JCI117600
Guzik, 2002, Mechanisms of increased vascular superoxide production in human diabetes mellitus: role of NAD(P)H oxidase and endothelial nitric oxide synthase, Circulation, 105, 1656, 10.1161/01.CIR.0000012748.58444.08
Ballinger, 2005, Mitochondrial dysfunction in cardiovascular disease, Free Radic. Biol. Med., 38, 1278, 10.1016/j.freeradbiomed.2005.02.014
Murphy, 2009, How mitochondria produce reactive oxygen species, Biochem. J., 417, 1, 10.1042/BJ20081386
Li, 2013, Induction of vascular insulin resistance, endothelin-1 expression, and acceleration of atherosclerosis by the overexpression of protein kinase C β isoform in the endothelium, Circ. Res., 113, 418, 10.1161/CIRCRESAHA.113.301074
Lowell, 2005, Mitochondrial dysfunction and type 2 diabetes, Science, 307, 384, 10.1126/science.1104343
Schuhmacher, 2011, Vascular dysfunction in experimental diabetes is improved by pentaerithrityltetranitrate but not isosorbide-5-mononitrate therapy, Diabetes, 60, 2608, 10.2337/db10-1395
Cheang, 2011, Endothelial nitric oxide synthase enhancer reduces oxidative stress and restores endothelial function in db/db mice, Cardiovasc. Res., 92, 267, 10.1093/cvr/cvr233
Wang, 2009, In vivo activation of AMP-activated protein kinase attenuates diabetes-enhanced degradation of GTP cyclohydrolase I, Diabetes, 58, 1893, 10.2337/db09-0267
Li, 2004, Endothelial cell superoxide generation: regulation and relevance for cardiovascular pathophysiology, Am. J. Physiol. Regul. Integr. Comp. Physiol., 287, R1014, 10.1152/ajpregu.00124.2004
Leopold, 2005, Oxidative enzymopathies and vascular disease, Arterioscler. Thromb. Vasc. Biol., 25, 1332, 10.1161/01.ATV.0000163846.51473.09
Maulik, 2008, Emerging potential of thioredoxin and thioredoxin interacting proteins in various disease conditions, Biochim. Biophys. Acta, 1780, 1368, 10.1016/j.bbagen.2007.12.008
Zelko, 2002, Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression, Free Radic. Biol. Med., 33, 337, 10.1016/S0891-5849(02)00905-X
Fennell, 2002, Adenovirus-mediated overexpression of extracellular superoxide dismutase improves endothelial dysfunction in a rat model of hypertension, Gene Ther., 9, 110, 10.1038/sj.gt.3301633
Zanetti, 2001, Gene transfer of superoxide dismutase isoforms reverses endothelial dysfunction in diabetic rabbit aorta, Am. J. Physiol. Heart Circ. Physiol., 280, H2516, 10.1152/ajpheart.2001.280.6.H2516
Nishikawa, 2000, Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage, Nature, 404, 787, 10.1038/35008121
Fridovich, 1998, Oxygen toxicity: a radical explanation, J. Exp. Biol., 201, 1203, 10.1242/jeb.201.8.1203
Muzykantov, 2001, Targeting of superoxide dismutase and catalase to vascular endothelium, J. Control. Release, 71, 1, 10.1016/S0168-3659(01)00215-2
Hayes, 2005, Glutathione transferases, Annu. Rev. Pharmacol. Toxicol., 45, 51, 10.1146/annurev.pharmtox.45.120403.095857
de Haan, 1998, Mice with a homozygous null mutation for the most abundant glutathione peroxidase, Gpx1, show increased susceptibility to the oxidative stress-inducing agents paraquat and hydrogen peroxide, J. Biol. Chem., 273, 22528, 10.1074/jbc.273.35.22528
Zhang, 2005, Adenosine-dependent induction of glutathione peroxidase 1 in human primary endothelial cells and protection against oxidative stress, Circ. Res., 96, 831, 10.1161/01.RES.0000164401.21929.CF
Torzewski, 2007, Deficiency of glutathione peroxidase-1 accelerates the progression of atherosclerosis in apolipoprotein E-deficient mice, Arterioscler. Thromb. Vasc. Biol., 27, 850, 10.1161/01.ATV.0000258809.47285.07
Weiss, 2001, Overexpression of cellular glutathione peroxidase rescues homocyst(e)ine-induced endothelial dysfunction, Proc. Natl. Acad. Sci. U. S. A., 98, 12503, 10.1073/pnas.231428998
Wu, 2004, Glutathione metabolism and its implications for health, J. Nutr., 134, 489, 10.1093/jn/134.3.489
Yamawaki, 2003, Thioredoxin: a key regulator of cardiovascular homeostasis, Circ. Res., 93, 1029, 10.1161/01.RES.0000102869.39150.23
Perrella, 2003, Role of heme oxygenase-1 in cardiovascular function, Curr. Pharm. Des., 9, 2479, 10.2174/1381612033453776
Stocker, 2006, Heme oxygenase-1: a novel drug target for atherosclerotic diseases?, Circulation, 114, 2178, 10.1161/CIRCULATIONAHA.105.598698
Morita, 2005, Heme oxygenase and atherosclerosis, Arterioscler. Thromb. Vasc. Biol., 25, 1786, 10.1161/01.ATV.0000178169.95781.49
Hoekstra, 2004, Protective role of heme oxygenase in the blood vessel wall during atherogenesis, Biochem. Cell Biol., 82, 351, 10.1139/o04-006
Aviram, 1998, Paraoxonase inhibits high-density lipoprotein oxidation and preserves its functions. A possible peroxidative role for paraoxonase, J. Clin. Invest., 101, 1581, 10.1172/JCI1649
Shih, 1998, Mice lacking serum paraoxonase are susceptible to organophosphate toxicity and atherosclerosis, Nature, 394, 284, 10.1038/28406
Mackness, 2003, Low paraoxonase activity predicts coronary events in the Caerphilly Prospective Study, Circulation, 107, 2775, 10.1161/01.CIR.0000070954.00271.13
Rozenberg, 2005, Paraoxonase 1 (PON1) attenuates macrophage oxidative status: studies in PON1 transfected cells and in PON1 transgenic mice, Atherosclerosis, 181, 9, 10.1016/j.atherosclerosis.2004.12.030
Horke, 2007, Paraoxonase-2 reduces oxidative stress in vascular cells and decreases endoplasmic reticulum stress-induced caspase activation, Circulation, 115, 2055, 10.1161/CIRCULATIONAHA.106.681700
Ng, 2006, Paraoxonase-2 deficiency aggravates atherosclerosis in mice despite lower apolipoprotein-B-containing lipoproteins: antiatherogenic role for paraoxonase-2, J. Biol. Chem., 281, 29491, 10.1074/jbc.M605379200
Ikeda, 1998, Serum paraoxonase activity and its relationship to diabetic complications in patients with noninsulin-dependent diabetes mellitus, Metabolism, 47, 598, 10.1016/S0026-0495(98)90246-3
Sena, 2011, Metformin restores endothelial function in aorta of diabetic rats Br, J. Pharmacol., 163, 424
Nathanson, 2009, Hypoglycemic pharmacological treatment of type 2 diabetes: targeting the endothelium, Mol. Cell. Endocrinol., 297, 112, 10.1016/j.mce.2008.11.016
Xu, 2009, Molecular insights and therapeutic targets for diabetic endothelial dysfunction, Circulation, 120, 1266, 10.1161/CIRCULATIONAHA.108.835223
Sena, 2010, Oxidative stress and endothelial dysfunction: novel therapeutic interventions, 153
Campia, 2012, Human obesity and endothelium-dependent responsiveness, Br. J. Pharmacol., 165, 561, 10.1111/j.1476-5381.2011.01661.x
Mancia, 2007, Guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC), J. Hypertens., 25, 1105, 10.1097/HJH.0b013e3281fc975a
Kietadisorn, 2012, Therapeutic possibilities uncoupling: new insights into its pathogenesis and tackling endothelial dysfunction by modulating NOS uncoupling: new insights into its pathogenesis and therapeutic possibilities, Am. J. Physiol. Endocrinol. Metab., 302, E481, 10.1152/ajpendo.00540.2011
Kureishi, 2000, The HMG-CoA reductase inhibitor simvastatin activates the protein kinase Akt and promotes angiogenesis in normocholesterolemic animals, Nat. Med., 6, 1004, 10.1038/79510
Dirnagl, 1999, Pathobiology of ischaemic stroke: an integrated view, Trends Neurosci., 22, 391, 10.1016/S0166-2236(99)01401-0
Stasch, 2002, Cardiovascular actions of a novel NO-independent guanylyl cyclase stimulator, BAY 41-8543: in vivo studies, Br. J. Pharmacol., 135, 344, 10.1038/sj.bjp.0704483
Hoenicka, 2008, Cardiovascular effects of modulators of soluble guanylylcyclase activity, Cardiovasc. Hematol. Agents Med. Chem., 6, 287, 10.2174/187152508785909555
Evora, 2012, Cardiovascular therapeutics targets on the NO–sGC–cGMP signaling pathway: a critical overview, Curr. Drug Targets, 13, 1207, 10.2174/138945012802002348
De Haan, 2011, Targeted antioxidant therapies in hyperglycemia-mediated endothelial dysfunction, Front. Biosci., 3, 709, 10.2741/s182
Hood, 2011, Nanocarriers for vascular delivery of antioxidants, Nanomedicine (Lond.), 6, 1257, 10.2217/nnm.11.92
Van-Assche, 2011, Gene therapy targeting inflammation in atherosclerosis, Curr. Pharm. Des., 17, 4210, 10.2174/138161211798764799
Rosenblat, 2006, Anti-oxidative effects of pomegranate juice (PJ) consumption by diabetic patients on serum and on macrophages, Atherosclerosis, 187, 363, 10.1016/j.atherosclerosis.2005.09.006
Aviram, 2002, Wine flavonoids protect against LDL oxidation and atherosclerosis, Ann. N. Y. Acad. Sci., 957, 146, 10.1111/j.1749-6632.2002.tb02913.x
Cayatte, 2001, S17834, a new inhibitor of cell adhesion and atherosclerosis that targets NADPH oxidase, Arterioscler. Thromb. Vasc. Biol., 21, 1577, 10.1161/hq1001.096723
Wind, 2010, Comparative pharmacology of chemically distinct NADPH oxidase inhibitors, Br. J. Pharmacol., 161, 885, 10.1111/j.1476-5381.2010.00920.x
Weseler, 2010, Oxidative stress and vascular function: implications for pharmacologic treatments, Curr. Hypertens. Rep., 12, 154, 10.1007/s11906-010-0103-9
Goldin, 2006, Vascular injury advanced glycation end products: sparking the development of diabetic vascular injury, Circulation, 114, 597, 10.1161/CIRCULATIONAHA.106.621854
Goh, 2008, The role of advanced glycation end products in progression and complications of diabetes, J. Clin. Endocrinol. Metab., 93, 1143, 10.1210/jc.2007-1817
Lee, 2012, Therapeutic potential of resolvins in the prevention and treatment of inflammatory disorders, Biochem. Pharmacol., 84, 1340, 10.1016/j.bcp.2012.08.004
Xu, 2010, Blockade of PKC-beta protects HUVEC from advanced glycation end products induced inflammation, Int. Immunopharmacol., 10, 1552, 10.1016/j.intimp.2010.09.006
Pacher, 2007, Role of poly(ADP-ribose) polymerase 1 (PARP-1) in cardiovascular diseases: the therapeutic potential of PARP inhibitors, Cardiovasc. Drug Rev., 25, 235, 10.1111/j.1527-3466.2007.00018.x
Bucci, 2004, Diabetic mouse angiopathy is linked to progressive sympathetic receptor deletion coupled to an enhanced caveolin-1 expression, Arterioscler. Thromb. Vasc. Biol., 24, 721, 10.1161/01.ATV.0000122362.44628.09
Garcia Soriano, 2001, Diabetic endothelial dysfunction: the role of poly(ADP-ribose) polymerase activation, Nat. Med., 7, 108, 10.1038/83241
Zheng, 2004, Poly(ADP-ribose) polymerase is involved in the development of diabetic retinopathy via regulation of nuclear factor-kappaB, Diabetes, 53, 2960, 10.2337/diabetes.53.11.2960
English, 2012, Administration of the PARP inhibitor Pj34 ameliorates the impaired vascular function associated with eNOS(−/−) mice, Reprod. Sci., 19, 806, 10.1177/1933719111433885
Hans, 2009, Protective effects of PARP-1 knockout on dyslipidemia-induced autonomic and vascular dysfunction in ApoE−/− mice: effects on eNOS and oxidative stress, PLoS One, 4, e7430, 10.1371/journal.pone.0007430
Packer, 2001, Molecular aspects of lipoic acid in the prevention of diabetes complications, Nutrition, 17, 888, 10.1016/S0899-9007(01)00658-X
Sola, 2005, Irbesartan and lipoic acid improve endothelial function and reduce markers of inflammation in the metabolic syndrome: results of the Irbesartan and Lipoic Acid in Endothelial Dysfunction (ISLAND) study, Circulation, 111, 343, 10.1161/01.CIR.0000153272.48711.B9
Arts, 2005, Polyphenols and disease risk in epidemiologic studies, Am. J. Clin. Nutr., 81, 317S, 10.1093/ajcn/81.1.317S
Vita, 2005, Polyphenols and cardiovascular disease: effects on endothelial and platelet function, Am. J. Clin. Nutr., 81, 292S, 10.1093/ajcn/81.1.292S
Habauzit, 2012, Evidence for a protective effect of polyphenols-containing foods on cardiovascular health: an update for clinicians, Ther. Adv. Chronic Dis., 3, 87, 10.1177/2040622311430006
Li, 2009, Resveratrol: a multifunctional compound improving endothelial function. Editorial to: “resveratrol supplementation gender independently improves endothelial reactivity and suppresses superoxide production in healthy rats”, by S. Soylemez et al., Cardiovasc. Drugs Ther., 23, 425, 10.1007/s10557-009-6209-0
Steinkamp-Fenske, 2007, Ursolic acid from the Chinese herb danshen (Salvia miltiorrhiza L.) upregulates eNOS and downregulates Nox4 expression in human endothelial cells, Atherosclerosis, 195, e104, 10.1016/j.atherosclerosis.2007.03.028
Steinkamp-Fenske, 2007, Reciprocal regulation of endothelial nitric-oxide synthase and NADPH oxidase by betulinic acid in human endothelial cells, J. Pharmacol. Exp. Ther., 322, 836, 10.1124/jpet.107.123356
Wallerath, 2003, Red wine increases the expression of human endothelial nitric oxide synthase: a mechanism that may contribute to its beneficial cardiovascular effects, J. Am. Coll. Cardiol., 41, 471, 10.1016/S0735-1097(02)02826-7
Ungvari, 2007, Resveratrol increases vascular oxidative stress resistance, Am. J. Physiol. Heart Circ. Physiol., 292, H2417, 10.1152/ajpheart.01258.2006
Wang, 2007, Effects of resveratrol on number and activity of endothelial progenitor cells from human peripheral blood, Clin. Exp. Pharmacol. Physiol., 34, 1109, 10.1111/j.1440-1681.2007.04667.x
Wong, 2011, Acute resveratrol supplementation improves flow-mediated dilatation in overweight/obese individuals with mildly elevated blood pressure, Nutr. Metab. Cardiovasc. Dis., 21, 851, 10.1016/j.numecd.2010.03.003
Han, 2007, Dietary polyphenols and their biological significance, Int. J. Mol. Sci., 8, 950, 10.3390/i8090950
Chen, 2007, In vitro electrophysiological mechanisms for antiarrhythmic efficacy of resveratrol, a red wine antioxidant, Eur. J. Pharmacol., 554, 196, 10.1016/j.ejphar.2006.10.016
Ng, 2005, The paraoxonase gene family and atherosclerosis, Free Radic. Biol. Med., 38, 153, 10.1016/j.freeradbiomed.2004.09.035
Aviram, 2000, Human serum paraoxonase (PON1) Q and R selectively decrease lipid peroxides in human coronary and carotid atherosclerotic lesions: PON1 esterase and peroxidase like activity, Circulation, 101, 2510, 10.1161/01.CIR.101.21.2510
Van Himbergen, 2006, The story of PO N1: how an organophosphate hydrolyzing enzyme is becoming a player in cardiovascular medicine, Neth. J. Med., 64, 34
Schmidt, 2008, Lipoprotein-associated phospholipase A2 concentrations in plasma are associated with the extent of coronary artery disease and correlate to adipose tissue levels of marine n−3 fatty acids, Atherosclerosis, 196, 420, 10.1016/j.atherosclerosis.2006.11.027
Hjerkinn, 2006, Effect of diet or very long chain omega-3 fatty acids on progression of atherosclerosis, evaluated by carotid plaques, intima-media thickness and by pulse wave propagation in elderly men with hypercholesterolaemia, Eur. J. Cardiovasc. Prev. Rehabil., 13, 325
Mindrescu, 2008, Omega-3 fatty acids plus rosuvastatin improves endothelial function in South Asians with dyslipidemia, Vasc. Health Risk Manag., 4, 1439, 10.2147/VHRM.S4001
Schiano, 2008, Omega-3 polyunsaturated fatty acid in peripheral arterial disease: effect on lipid pattern, disease severity, inflammation profile, and endothelial function, Clin. Nutr., 27, 241, 10.1016/j.clnu.2007.11.007
Cloarec, 2007, GliSODin, a vegetal sod with gliadin, as preventative agent vs. atherosclerosis, as confirmed with carotid ultrasound-B imaging, Eur. Ann. Allergy Clin. Immunol., 39, 45
Bernatchez, 2011, A noninhibitory mutant of the caveolin-1 scaffolding domain enhances eNOS-derived NO synthesis and vasodilation in mice, J. Clin. Invest., 121, 3747, 10.1172/JCI44778
Channon, 2012, Tetrahydrobiopterin: a vascular redox target to improve endothelial function, Curr. Vasc. Pharmacol., 10, 705, 10.2174/157016112803520819
Viollet, 2011, AMP-activated protein kinase and metabolic control, Handb. Exp. Pharmacol., 203, 303, 10.1007/978-3-642-17214-4_13
Szabó, 2002, FP 15, a novel potent peroxynitrite decomposition catalyst: in vitro cytoprotective actions and protection against diabetes mellitus and diabetic cardiovascular complications, Mol. Med., 8, 571, 10.1007/BF03402167
Radovits, 2007, The peroxynitrite decomposition catalyst FP15 improves ageing-associated cardiac and vascular dysfunction, Mech. Ageing Dev., 128, 173, 10.1016/j.mad.2006.09.005
Wolfrum, 2004, Inhibition of Rho-kinase leads to rapid activation of phosphatidylinositol 3-kinase/protein kinase Akt and cardiovascular protection, Arterioscler. Thromb. Vasc. Biol., 24, 1842, 10.1161/01.ATV.0000142813.33538.82
Arita, 2009, Rho kinase inhibition by fasudil ameliorates diabetes-induced microvascular damage, Diabetes, 58, 215, 10.2337/db08-0762
Drummond, 2011, Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets, Nat. Rev. Drug Discov., 10, 453, 10.1038/nrd3403
Symons, 2013, Opportunity “Nox”: a novel approach to preventing endothelial dysfunction in the context of insulin resistance, Diabetes, 62, 1818, 10.2337/db13-0255
Lanati, 2010, Soluble RAGE-modulating drugs: state-of-the-art and future perspectives for targeting vascular inflammation, Curr. Vasc. Pharmacol., 8, 86, 10.2174/157016110790226642
Duplain, 2001, Insulin resistance, hyperlipidemia, and hypertension in mice lacking endothelial nitric oxide synthase, Circulation, 104, 342, 10.1161/01.CIR.104.3.342
Kashiwagi, 2013, eNOS phosphorylation on serine 1176 affects insulin sensitivity and adiposity, Biochem. Biophys. Res. Commun., 431, 284, 10.1016/j.bbrc.2012.12.110
Rozenberg, 2008, Paraoxonase1 (PON1) attenuates diabetes development in mice through its antioxidative properties, Free Radic. Biol. Med., 44, 1951, 10.1016/j.freeradbiomed.2008.02.012