Endornaviruses: các virus dsRNA lâu dài với đặc tính ký sinh trong các eukaryote đa dạng

Virus Genes - Tập 55 - Trang 165-173 - 2019
Toshiyuki Fukuhara1
1Department of Applied Biological Sciences, Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo, Japan

Tóm tắt

Endornavirus là những virus RNA hai chuỗi (dsRNA) độc đáo, bền bỉ, có tính chất ký sinh, lây nhiễm cho nhiều eukaryote khác nhau, chẳng hạn như thực vật, nấm và oomycetes. Endornavirus chứa một bộ gen dsRNA tuyến tính có chiều dài khoảng 10 đến 17 kbp và được phân loại trong họ Endornaviridae, bao gồm hai chi, Alphaendornavirus và Betaendornavirus. Các endornavirus mã hóa một khung đọc mở dài duy nhất chứa khoảng 3200 đến 5800 dư lượng axit amin của helicase RNA virus bảo tồn và các miền RNA phụ thuộc RNA polymerase, và một số endornavirus chứa một vết cắt đặc hiệu vị trí trong sợi mã hóa của bộ gen dsRNA của chúng. Virus thực vật cấp tính sinh sản nhanh chóng và hệ thống, cuối cùng giết chết cây chủ, và sau đó được truyền qua theo chiều ngang. Ngược lại, endornavirus thực vật có một số đặc tính bền bỉ (ký sinh) chung: số lượng bản sao thấp ổn định trong cây chủ, không có tác động rõ rệt đến cây chủ, và truyền qua hiệu quả theo chiều dọc thông qua giao tử. Endornavirus thực vật có khả năng duy trì trong các cây chủ hàng trăm thế hệ, vì vậy cây chủ phải quản lý nghiêm ngặt sự sinh sản của chúng. Trong khi quá trình giảm RNA hoạt động như một hệ thống phòng thủ chống lại các virus cấp tính trong thực vật, nó có thể cần thiết cho sự nhiễm trùng bền bỉ (chu kỳ sống ký sinh) của endornavirus. Quy trình này bao gồm việc quản lý nghiêm ngặt số lượng virus bản sao thấp (sinh sản ổn định trước mỗi lần phân chia tế bào chủ) và sự truyền virus hiệu quả đến thế hệ tiếp theo.

Từ khóa

#Endornavirus #virus dsRNA #Eukaryota #thực vật #nấm #oomycetes #ký sinh #sinh sản bền bỉ

Tài liệu tham khảo

Dodds JA, Morris TJ, Jordan RL (1984) Plant viral double-stranded RNA. Annu Rev Phytopathol 22:151–168 Boccardo G, Lisa V, Luisini E, Milne RG (1987) Cryptic plant viruses. Adv Virus Res 32:171–214 Brown GG, Finnegan PM (1989) RNA plasmids. Int Rev Cytol 117:1–56 Natsuaki T, Yamashita S, Doi Y, Yora K (1979) Ann Phytopath Soc Japan 45:313–320 Valverde RA, Nameth S, Abdallha O, Al-Musa O, Desjardins P, Dodds JA (1990) Indigenous double-stranded RNA from pepper (Capsicum annuum). Plant Sci 67:195–201 Fukuhara T, Moriyama H, Pak JK, Hyakutake T, Nitta T (1993) Enigmatic double-stranded RNA in Japonica rice. Plant Mol Biol 21:1121–1130 Ghabrial SA, Nibert ML, Maiss E, Lesker T, Baker TS, Tao YJ (2012) Family partitiviridae. In: King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (eds) Virus taxonomy: ninth report of the International Committee on Taxonomy of Viruses. Elsevier, San Diego, pp 523–534 Fukuhara T, Gibbs MJ (2012) Family endornaviridae. In: King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (eds) Virus taxonomy: ninth report of the International Committee on Taxonomy of Viruses. Elsevier, San Diego, pp 519–521 Wakarchuk DA, Hamilton RI (1985) Cellular double-stranded RNA in Phaseolus vulgaris. Plant Mol Biol 5:55–63 Zabalgogeazcoa IA, Gildow FE (1992) Double-stranded ribonucleic acid in ‘Barsoy’ barley. Plant Sci 83:187–194 Wakarchuk DA, Hamilton RI (1990) Partial nucleotide sequence from enigmatic dsRNAs in Phaseolus vulgaris. Plant Mol Biol 14:637–639 Pfeiffer P (1998) Nucleotide sequence, genetic organization and expression strategy of the double-stranded RNA associated with the ‘447’ cytoplasmic male sterility in Vicia faba. J Gen Virol 79:2349–2358 Moriyama H, Nitta T, Fukuhara T (1995) Double-stranded RNA in rice: a novel RNA replicon in plants. Mol Gen Genet 248:364–369 Moriyama H, Horiuchi H, Koga R, Fukuhara T (1999) Molecular characterization of two endogenous double-stranded RNAs in rice and their inheritance by interspecific hybrids. J Biol Chem 274:6882–6888 Gibbs MJ, Koga K, Moriyama H, Pfeiffer P, Fukuhara T (2000) Phylogenetic analysis of some large double-stranded RNA replicons from plants suggests they evolved from a defective single-stranded RNA virus. J Gen Virol 81:227–233 Gibbs MJ, Pfeiffer P, Fukuhara T (2005) Genus Endornavirus. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) Virus taxonomy: Eighth report of the International Committee on Taxonomy of Viruses. Elsevier, San Diego, pp 603–605 Ghabrial S, Suzuki N (2009) Viruses of plant pathogenic fungi. Annu Rev Phytopathol 47:353–384 Dolja VV, Koonin EV (2012) Capsid-Less RNA Viruses. Wiley, Chichester. https://doi.org/10.1002/9780470015902.a0023269 Khalifa ME, Pearson MN (2014) Molecular characterization of an endornavirus infecting the phytopathogen Sclerotinia sclerotiorum. Virus Res 189:303–309 Edwardson JR, Bond DA, Christie RG (1976) Cytoplasmic sterility factors in Vicia faba L. Genetics 82:443–449 Grill LK, Garger SJ (1981) Identification and characterization of double-stranded RNA associated with cytoplasmic male sterility in Vicia faba. Proc Natl Acad Sci USA 78:7043–7046 Turpen T, Garger SJ, Grill LK (1988) On the mechanism of cytoplasmic male sterility in the 447 line of Vicia faba. Plant Mol Biol 10:489–497 Moriyama H, Horiuchi H, Nitta T, Fukuhara T (1999) Unusual inheritance of evolutionarily-related double-stranded RNAs in interspecific hybrid between rice plants Oryza sativa and Oryza rufipogon. Plant Mol Biol 39:1127–1136 Horiuchi H, Moriyama H, Fukuhara T (2003) Inheritance of Oryza sativa endornavirus in F1 and F2 hybrids between japonica and indica rice. Genes Genet Syst 78:229–234 Moriyama H, Kanaya K, Wang JZ, Nitta T, Fukuhara T (1996) Stringently and developmentally regulated levels of a cytoplasmic double-stranded RNA and its high-efficiency transmission via egg and pollen in rice. Plant Mol Biol 31:713–719 Zabalgogeazcoa IA, Cox-Fostre DC, Gildow FE (1993) Pedigree analysis of the transmission of a double-stranded RNA in barley cultivars. Plant Sci 91:45–53 Candresse T, Marais A, Sorrentino R, Faure C, Theil S, Cadot V, Rolland M, Villemot J, Rabenstein F (2016) Complete genomic sequence of barley (Hordeum vulgare) endornavirus (HvEV) determined by next-generation sequencing. Arch Virol 161:741–743 Mackenzie SA, Pring DR, Bassett MJ (1988) Large double-stranded RNA molecules in Phaseolus vulgaris L. are not associated with cytoplasmic male sterility. Theor Appl Genet 76:59–63 Okada R, Yong CK, Valverde RA, Sabanadzovic S, Aoki N, Hotate S, Kiyota E, Moriyama H, Fukuhara T (2013) Molecular characterization of two evolutionally distinct endornaviruses co-infecting common bean (Phaseolus vulgaris). J Gen Virol 94:2191–2199 Valverde RA, Fontenot JF (1991) Variation in double-stranded ribonucleic acid among pepper cultivars. J Am Soc Hort Sci 116:903–905 Okada R, Kiyota E, Sabanadzovic S, Moriyama H, Fukuhara T, Saha P, Roossinck MJ, Severin A, Valverde RA (2011) Bell pepper endornavirus: molecular and biological properties and occurrence in the genus Capsicum. J Gen Virol 92:2664–2673 Lim S, Kim KH, Zhao F, Yoo RH, Igori D, Lee S-H, Moon JS (2015) Complete genome sequence of a novel endornavirus isolated from hot pepper. Arch Virol 160:3153–3156 Coutts RHA (2005) First report of an endornavirus in the Cucurbitaceae. Virus Genes 31:361–362 Sabanadzovic S, Wintermantel WM, Valverde RA, McCreight JD, Aboughanem-Sabanadzovic N (2016) Cucumis melo endornavirus: genome organization, host range and co-divergence with the host. Virus Res 214:49–58 Fukuhara T, Koga R, Aoki N, Yuki C, Yamamoto N, Oyama N, Udagawa T, Horiuchi H, Miyazaki S, Higashi Y, Takeshita M, Ikeda K, Arakawa M, Matsumoto N, Moriyama H (2006) The wide distribution of endornaviruses, large double-stranded RNA replicons with plasmid-like properties. Arch Virol 151:995–1002 Kwon S-J, Tan S, Vidalakis G (2014) Complete genome sequence and genome organization of an endornavirus from bottle gourd (Lagenaria siceraria) in California U. S. A. Virus Genes 49:163–168 Peng X, Pan H, Muhammad A, An H, Fang S, Li W, Zhang S (2018) Complete genome sequence of a new strain of Lagenaria siceraria endornavirus from China. Arch Virol 163:805–808 Villanueva F, Sabanadzovic S, Valverde RA, Navas-Castillo J (2012) Complete genome sequence of a double-stranded RNA virus from avocado. J Virol 86:1282–1283 Khankhum S, Valverde RA (2018) Physiological traits of endornavirus-infected and endornavirus-free common bean (Phaseolus vulgaris) cv Black Turtle Soup. Arch Virol 163:1051–1056 Nuss DL, Koltin Y (1990) Significance of dsRNA genetic elements in plant pathogenic fungi. Annu Rev Phytopathol 28:37–58 Ghabrial SA (1994) New developments in fungal virology. Adv Virus Res 43:303–388 Ghabrial SA, Castón JR, Jiang D, Nibert ML, Suzuki N (2015) 50-plus years of fungal viruses. Virology 479–480:356–368 Osaki H, Nakamura H, Sasaki A, Matsumoto N, Yoshida K (2006) An endornavirus from a hypovirulent strain of the violet root rot fungus, Helicobasidium mompa. Virus Res 118:143–149 Hacker CV, Brasier CM, Buck KW (2005) A double-stranded RNA from a Phytophthora species is related to the plant endornaviruses and contains a putative UDP glycosyltransferase gene. J Gen Virol 86:1561–1570 Liu H, Fu Y, Xie J, Cheng J, Ghabrial SA, Li G, Yi X, Jiang D (2012) Discovery of novel dsRNA viral sequences by in silico cloning and implications for viral diversity, host range and evolution. PLoS ONE 7:e42147 Wylie SJ, Adams M, Chalam C, Kreuze J, López-Moya JJ, Ohshima K, Praveen S, Rabenstein F, Stenger D, Wang A, Zerbini FM, ICTV Report Consortium (2017) ICTV Virus Taxonomy Profile: Potyviridae. J Gen Virol 98:352–354 Pfeiffer P, Jung JL, Heitzler J, Keith G (1993) Unusual structure of the double-stranded RNA associated with the ‘447’ cytoplasmic male sterility in Vicia faba. J Gen Virol 74:1167–1173 Fukuhara T, Moriyama H, Nitta T (1995) The unusual structure of a novel RNA replicon in rice. J Biol Chem 270:18147–18149 Lefebvre A, Scalla R, Pfeiffer P (1990) The double-stranded RNA associated with the `447′ cytoplasmic male sterility in Vicia faba is packaged together with its replicase in cytoplasmic membranous vesicles. Plant Mol Biol 14:477–490 Horiuchi H, Udagawa T, Koga K, Moriyama H, Fukuhara T (2001) RNA-dependent RNA polymerase activity associated with endogenous double-stranded RNA in rice. Plant Cell Physiol 42:197–203 Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289 Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811 Romano N, Macino G (1992) Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol Microbiol 6:3343–3353 Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363 Lindbo JA, Dougherty WG (2005) Plant pathology and RNAi: a brief history. Annu Rev Phytopathol 43:191–204 Henderson IR, Zhang X, Lu C, Johnson L, Meyers BC, Green PJ et al (2006) Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning. Nat Genet 38:721–725 Fukudome A, Fukuhara T (2017) Plant Dicer-like proteins: double-stranded RNA-cleaving enzymes for small RNA biogenesis. J Plant Res 130:33–44 Fagard M, Boutet S, Morel JB, Bellini C, Vaucheret H (2000) AGO1, QDE-2, and RDE-1 are related proteins required for post-transcriptional gene silencing in plants, quelling in fungi, and RNA interference in animals. Proc Natl Acad Sci USA 97:11650–11654 Baumberger N, Baulcombe DC (2005) Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci USA 102:11928–11933 Bouche N, Lauressergues D, Gasciolli V, Vaucheret H (2006) An antagonistic function for Arabidopsis DCL2 in development and a new function for DCL4 in generating viral siRNAs. EMBO J 25:3347–3356 Donaire L, Wang Y, Gonzalez-Ibeas D, Mayer KF, Aranda MA, Llave C (2009) Deep-sequencing of plant viral small RNAs reveals effective and widespread targeting of viral genomes. Virology 392:203–214 Nagano H, Fukudome A, Hiraguri A, Moriyama H, Fukuhara T (2014) Distinct substrate specificities of Arabidopsis DCL3 and DCL4. Nucleic Acids Res 42:1845–1856 Wang XB, Jovel J, Udomporn P, Wang Y, Wu Q, Li WX, Gasciolli V, Vaucheret H, Ding SW (2011) The 21-nucleotide, but not 22-nucleotide, viral secondary small interfering RNAs direct potent antiviral defense by two cooperative argonautes in Arabidopsis thaliana. Plant Cell 23:1625–1638 Garcia-Ruiz H, Carbonell A, Hoyer JS, Fahlgren N, Gilbert KB, Takeda A, Giampetruzzi A, Garcia Ruiz MT, McGinn MG, Lowery N, Martinez Baladejo MT, Carrington JC (2015) Roles and programming of Arabidopsis ARGONAUTE proteins during Turnip mosaic virus infection. PLoS Pathog 11:e1004755 Kasschau KD, Carrington JC (1998) A counterdefensive strategy of plant viruses: suppression of posttranscriptional gene silencing. Cell 95:461–470 Roth BM, Pruss GJ, Vance VB (2004) Plant viral suppressors of RNA silencing. Virus Res 102:97–108 Csorba T, Kontra L, Burgyán J (2015) Viral silencing suppressors: tools forged to fine-tune host-pathogen coexistence. Virology 479–480:85–103 Urayama S, Moriyama H, Aoki N, Nakazawa Y, Okada R, Kiyota E, Miki D, Shimamoto K, Fukuhara T (2010) Knock-down of OsDCL2 in rice negatively affects maintenance of the endogenous dsRNA virus, Oryza sativa endornavirus. Plant Cell Physiol 51:58–67 Sela N, Luria N, Dombrovsky A (2012) Genome assembly of bell pepper endornavirus from small RNA. J Virol 86:7721 Nordenstedt N, Marcenaro D, Chilagane D, Mwaipopo B, Rajamäki ML, Nchimbi-Msolla S, Njau PJR, Mbanzibwa DR, Valkonen JPT (2017) Pathogenic seedborne viruses are rare but Phaseolus vulgaris endornaviruses are common in bean varieties grown in Nicaragua and Tanzania. PLoS ONE 12:e0178242 Manche L, Green SR, Schmedt C, Mathews MB (1992) Interactions between double-stranded RNA regulators and the protein kinase DAI. Mol Cell Biol 12:5238–5248 Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD (1998) How cells respond to interferons. Annu Rev Biochem 67:227–264 Okada R, Kiyota E, Moriyama H, Fukuhara T, Valverde RA (2014) A new endornavirus species infecting Malabar spinach (Basella alba L.). Arch Virol 159:807–809 Okada R, Kiyota K, Moriyama H, Fukuhara T, Valverde RA (2017) Molecular and biological properties of an endornavirus infecting winged bean (Psophocarpus tetragonolobus). Virus Genes 53:141–145 Debat HJ, Grabiale M, Aguilera PM, Bubillo R, Zapata PD, Marti DA, Ducasse DA (2014) The complete genome of a putative endornavirus identified in yerba mate (Ilex paraguariensis St. Hil.). Virus Genes 49:348–350 Du Z, Lin W, Qiu P, Liu X, Guo L, Wu K, Zhang S, Wu Z (2016) Complete sequence of a double-stranded RNA from the phytopathogenic fungus Erysiphe cichoracearum that might represent a novel endornavirus. Arch Virol 161:2343–2346 Espach Y, Maree HJ, Burger JT (2012) Complete genome of a novel endornavirus assembled from next-generation sequence data. J Virol 86:13142 Li W, Zhang T, Sun H, Deng Y, Zhang A, Chen H, Wang K (2014) Complete genome sequence of a novel endornavirus in the wheat sharp eyespot pathogen Rhizoctonia cerealis. Arch Virol 159:1213–1216 Shang HH, Zhong J, Zhang RJ, Chen CY, Gao BD, Zhu HJ (2015) Genome sequence of a novel endornavirus from the phytopathogenic fungus Alternaria brassicicola. Arch Virol 160:1827–1830 Hao F, Zhou Z, Wu M, Li G (2017) Molecular characterization of a novel endornavirus from the phytopathogenic fungus Botritis cinerea. Arch Virol 162:313–316 Tuomivirta TT, Kaitera J, Hantula J (2009) A novel putative virus of Gremmeniella abietina type B (Ascomycota: Helotiaceae) has a composite genome with endornavirus affinities. J Gen Virol 90:2299–2305 Stielow B, Klenk HP, Menzel W (2011) Complete genome sequence of the first endornavirus from the ascocarp of the ectomycorrhizal fungus Tuber aestivum Vittad. Arch Virol 156:343–345