Endophytes from Gingko biloba: the current status

Springer Science and Business Media LLC - Tập 19 - Trang 743-759 - 2020
Rufin Marie Kouipou Toghueo1
1Antimicrobial and Biocontrol Agents Unit (AmBcAU), Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon

Tóm tắt

The maidenhair tree (Gingko biloba) over his long period of existence has developed the ability to withstand multiple and diverse environmental stresses and microbial diseases. This species can, therefore, constitute a very good candidate for microbiological research. In fact, besides its outstanding pharmaceutical properties, several studies over the past two decades have also demonstrated that this fossil tree hosts numerous and highly diverse endophytic microorganisms. In this review, we summarized the current trend of knowledge on the different groups of microbial species inhabiting G. biloba including novel microbial species recently identified. Moreover, novel secondary metabolites isolated from these endophytes and their associated biological activities are also discussed. Our investigation is indicating clearly that G. biloba is a very rich source of endophytes because more than 30 genera of fungi and bacteria have already been reported as endophytes of this plant. However, because only a very small fraction of isolated endophytes was fully characterized, this diversity is highly underestimated, besides the paucity of information regarding endophytic bacteria and actinomycetes. We also brought to light the fact that limited is data regarding the bioactive spectrum of these endophytes. From this summary of data from the last two decades, it has become clear that more investigations are needed to fully characterize the endophytic microbial community inhabiting the maidenhair tree for both microbiological and pharmaceutical purposes.

Tài liệu tham khảo

Ahmed SA, Desbois N, Quist D, Miossec C, Atoche C, Bonifaz A, De Hoog GS (2015) Phaeohyphomycosis caused by a novel species, Pseudochaetosphaeronema martinelli. J Clin Microbiol 53:2927–2934 Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: Are tropical leaves biodiversity hotspots? Ecology 88:541–549 Bacon CW, White J (2000) Microbial endophytes. CRC, New York Banerjee D, Strobel G, Geary B, Sears J, Ezra D, Liarzi O, Coombs J (2010) Muscodor albus strain GBA, an endophytic fungus of Ginkgo biloba from United States of America, produces volatile antimicrobials. Mycology 1(3):179–186 Bauer MA, Kainz K, Carmona-Gutierrez D, Madeo F (2018) Microbial wars: Competition in ecological niches and within the microbiome. Microb Cell 5(5):215–219 Borelli D, Zamora R, Senabre G (1976) Chaetosphaeronema Larense nova species agente de micetoma. Gaceta Med Caracas 84:307–318 Cao LL, Zhang YY, Liu YJ, Yang TT, Zhang JL, Zhang ZG, Shen L, Liu JY, Ye YH (2016) Anti-phytopathogenic activity of sporothriolide, a metabolite from endophyte Nodulisporium sp. A21 in Ginkgo biloba. Pestic Biochem Physiol 129:7–13 Cassileth B (2011) Ginkgo (Ginkgo biloba). Oncology (Williston Park) 25:971 Cavalier-Smith T (2006) Cell evolution and Earth history: stasis and revolution. Philos Trans R Soc Lond B Biol Sci 361(1470):969–1006 Chan WH, Hsuuw YD (2007) Dosage effects of Ginkgolide B on ethanol-induced cell death in human hepatoma G2 cells. N Y Acad Sci USA 1095:388–398 Cheng S, Xu F, Wang Y (2009) Advances in the study of flavonoids in Ginkgo biloba leaves. J Med Plant Res 3:1248–1252 Chung BY, Won LS, Lee BR, Lee CH (1982) A new chemical constituents of green leaves of Ginkgo biloba L. J Korean Chem Soc 26:95–98 Cui Y, Yi D, Bai X, Sun B, Zhao Y, Zhang Y (2012) Ginkgolide B produced endophytic fungus (Fusarium oxysporum) isolated from Ginkgo biloba. Fitoterapia 83(5):913–920 De Abreu LM, Almeida AR, Salgado M, Pfenning LH (2010) Fungal endophytes associated with the mistletoe Phoradendron perrottettii and its host tree Tapirira guianensis. Mycol Prog 9:559–566 De Feudis FV (1991) Ginkgo biloba Extract (EGb 761): pharmacological activities and clinical applications. Drug News Perspect 5:361–363 DeFeudis FV (1998) Ginkgo biloba Extract (EGb 761): from chemistry to the clinic. Ulistein, Weisbaden, pp 119–133 Ding C, Chen E, Zhou W, Lindsay RC (2004) A method for extraction and quantification of ginkgo terpene trilactones. Anal Chem 76:4332–4336 Drieu K, Jaggy H, van Beek TA (2000) Medicinal and aromatic plants-industrial profiles; Ginkgo biloba. CRC Press, Amsterdam, p 35 Gazis R, Chaverri P (2010) Diversity of fungal endophytes in leaves and stems of wild rubber trees (Hevea brasiliensis) in Peru. Fungal Ecol 3:240–254 Gross R, Beier D (eds) (2012) Two-component systems in bacteria. Caister Academic Press, Norfolk. ISBN 978-1-908230-08-9 Gu JH, Ge JB, Li M, Wu F, Zhang W, Qin ZH (2012) Inhibition of NF-kappaB activation is associated with anti-inflammatory and anti-apoptotic effects of Ginkgolide B in a mouse model of cerebral ischemia/reperfusion injury. Eur J Pharm Sci 47:652–660 Guo ZK, Yan T, Guo Y, Song YC, Jiao RH, Tan RX, Ge HM (2012) p-Terphenyl and diterpenoid metabolites from endophytic Aspergillus sp. YXf3. J Nat Prod 75(1):15–21 Guo ZK, Wang R, Huang W, Li XN, Jiang R, Tan RX, Ge HM (2014) Aspergiloid I, an unprecedented spirolactone norditerpenoid from the plant-derived endophytic fungus Aspergillus sp. YXf3. Beilstein J Org Chem 10:2677–2682 Hao G, Du X, Zhao F, Ji H (2010) Fungal endophytes-induced abscisic acid is required for flavonoid accumulation in suspension cells of Ginkgo biloba. Biotechnol Lett 32(2):305–314 Harvey AL (2008) Natural products in drug discovery. Drug Discov Today 13:19/20 Helaly SE, Thongbai B, Stadler M (2018) Diversity of biologically active secondary metabolites from endophytic and saprotrophic fungi of the Ascomycete order Xylariales. Nat Prod Rep. https://doi.org/10.1039/c8np00010g Huh H, Staba EJ (1992) The botany and chemistry of Ginkgo biloba L. J Herbs Spices Med Plants 1:91–124 Isah T (2015) Rethinking Ginkgo biloba L.: Medicinal uses and conservation. Pharmacogn Rev 9(18):140–148. https://doi.org/10.4103/0973-7847.162137 Islam MN, Choi J, Baek KH (2019) Control of foodborne pathogenic bacteria by endophytic bacteria isolated from Ginkgo biloba L. Foodborne Pathog Dis. https://doi.org/10.1089/fpd.2018.2496 Jaracz S, Malik S, Nakanishi K (2004) Isolation of Ginkgolides A, B, C, J and bilobalide from G. biloba extracts. Phytochemistry 65:2897–2902 Ji HF, Li XJ, Zhang HY (2009) Natural products and drug discovery. Can thousands of years of ancient medical knowledge lead us to new and powerful drug combinations in the fight against cancer and dementia? EMBO Rep 10(3):194–200. https://doi.org/10.1038/embor.2009.12 Jia M, Chen L, Xin H-L, Zheng C-J, Rahman K, Han T, Qin L-P (2016) A friendly relationship between endophytic fungi and medicinal plants: a systematic review. Front Microbiol 7:906. https://doi.org/10.3389/fmicb.2016.00906 Kim SU, Strobel G, Ford E (1999) Screening of taxol-producing endophytic fungi from Ginkgo biloba and Taxus cuspidata in Korea. Agric Chem Biotechnol 42:97–99 Köberl M, Schmidt R, Ramadan EM, Bauer R, Berg G (2013) The microbiome of medicinal plants: diversity and importance for plant growth, quality and health. Front Microbiol 4:400. https://doi.org/10.3389/fmicb.2013.00400 Kong DX, Li XJ, Tang GY, Zhang HY (2008a) How many traditional Chinese medicine components have been recognized by modern Western medicine? A chemoinformatic analysis and implications for finding multicomponent drugs. ChemMedChem 3:233–236 Kong DX, Li XJ, Zhang HY (2008b) Where is the hope for drug discovery? Let history tell the future. Drug Discov Today 14:115–119 Kumar A, Singh S, Pandey A (2009) General microflora, arbuscular mycorrhizal colonization and occurrence of endophytes in the rhizosphere of two age groups of Ginkgo biloba L. of Indian Central Himalaya. Indian J Microbiol 49(2):134–141 Kumaran RS, Hur BK (2009) Screening of species of the endophytic fungus Phomopsis for the production of the anticancer drug taxol. Biotechnol Appl Biochem 54(1):21–30 Kusari S, Lamshöft M, Spiteller M (2009) Aspergillus fumigates Fresenius, an endophytic fungus from Juniperus communis L. Horstmann as a novel source of the anticancer pro-drug deoxypodophyllotoxin. J Appl Microbiol 107:1019–1030 Kusari S, Singh S, Jayabaskaran C (2014) Biotechnological potential of plant-associated endophytic fungi: hope versus hype. Trends Biotechnol 32(6):297–303 Li DM, Zhang YH, Ji HX, Wu X, Pei YH, Bai J (2013a) Tricycloalternarene derivatives from endophytic fungus Alternaria tenuissima SY-P-07. Nat Prod Res 27(20):1877–1881 Li X, Tian Y, Yang SX, Zhang YM, Qin JC (2013b) Cytotoxic azaphilone alkaloids from Chaetomium globosum TY1. Bioorg Med Chem Lett 23(10):2945–2947 Li H, Xiao J, Gao YQ, Tang JJ, Zhang AL, Gao JM (2014) Chaetoglobosins from Chaetomium globosum, an endophytic fungus in Ginkgo biloba, and their phytotoxic and cytotoxic activities. J Agric Food Chem 62(17):3734–3741 Liao HJ, Zheng YF, Li HY, Peng GP (2011) Two new Ginkgolides from leaves of Ginkgo biloba. Planta Med 77:1818–1821 Liu X, Dong M, Chen X, Jiang M, Lv X, Yan G (2007) Antioxidant activity and phenolics of an endophytic Xylaria sp. from Ginkgo biloba. Food Chem 105:548–554 Liu X, Dong M, Chen X, Jiang M, Lv X, Zhou J (2008) Antimicrobial activity of an endophytic Xylaria sp. YX-28 and identification of its antimicrobial compound 7-amino-4-methylcoumarin. Appl Microbiol Biotechnol 78(2):241–247 Lü W, Liu C, Huang L, Yan X (2017) Genome-wide prediction and analysis of the secretory proteins and ORFs signal peptide of ginkgo endophyte KM-1-2. Wei Sheng Wu Xue Bao 57(3):411–421 Macalady JL, Hamilton TL, Grettenberger CL, Jones DS, Tsao LE, Burgos WD (2013) Energy, ecology and the distribution of microbial life. Philos Trans R Soc Lond B Biol Sci 368(1622):20120383 Mahadevan S, Park Y (2007) Multifaceted therapeutic benefits of Ginkgo biloba L.: chemistry, efficacy, safety, and uses. J Food Sci 73(1):R14–R19. https://doi.org/10.1111/j.1750-3841.2007.00597.x McKenna DJ, Jones K, Hughes K (2001) Efficacy, safety, and use of Ginkgo biloba in clinical and preclinical applications. Altern Ther Health Med 7:70–86 Mohanta TK (2012) Advances in Ginkgo biloba research: Genomics and metabolomics perspectives. Afr J Biotechnol 11:15936–15944 Newman DJ, Cragg GM, Snader KM (2000) The influence of natural products upon drug discovery. Nat Prod Rep 17::215–234 Pan Y, Jin H, Yang S, Liu H (2019a) Changes of volatile organic compounds and bioactivity of Alternaria brassicae GL07 in different ages. J Basic Microbiol 59(7):713–722 Pan Y, Zheng W, Yang S (2019b) Chemical and activity investigation on metabolites produced by an endophytic fungi Psathyrella candolleana from the seed of Ginkgo biloba. Nat Prod Res. https://doi.org/10.1080/14786419.2019.1607335 Pawle G, Singh SK (2014) Antimicrobial, antioxidant activity and phytochemical analysis of an endophytic species of Nigrospora isolated from living fossil Ginkgo biloba. CREAM 4(1):1–9. https://doi.org/10.5943/cream/4/1/1 Qian YX, Kang JC, Luo YK, Zhao JJ, He J, Geng K (2016) A bilobalide-producing endophytic fungus, Pestalotiopsis uvicola from medicinal plant Ginkgo biloba. Curr Microbiol 73(2):280–286. https://doi.org/10.1007/s00284-016-1060-6 Qin JC, Gao JM, Zhang YM, Yang SX, Bai MS, Ma YT, Laatsch H (2009a) Polyhydroxylated steroids from an endophytic fungus, Chaetomium globosum ZY-22 isolated from Ginkgo biloba. Steroids 74(9):786–790. https://doi.org/10.1016/j.steroids.2009.04.011 Qin JC, Zhang YM, Gao JM, Bai MS, Yang SX, Laatsch H, Zhang AL (2009b) Bioactive metabolites produced by Chaetomium globosum, an endophytic fungus isolated from Ginkgo biloba. Bioorg Med Chem Lett 19(6):1572–1574 Qin JC, Zhang YM, Hu L, Ma YT, Gao JM (2009c) Cytotoxic metabolites produced by Alternaria no.28, an endophytic fungus isolated from Ginkgo biloba. Nat Prod Commun 4(11):1473–1476 Qin XF, Lu XJ, Ge JB, Xu HZ, Qin HD, Xu F (2014) Ginkgolide B prevents cathepsin-mediated cell death following cerebral ischemia/reperfusion injury. Neuroreport 25:267–273 Qiu M, Xie R, Shi Y, Chen H, Wen Y, Gao Y, Hu X (2009) Isolation and identification of endophytic fungus SX01, a red pigment producer from Ginkgo biloba L. World J Microbiol Biotech 26(6):993–998. https://doi.org/10.1007/s11274-009-0261-6 Qiu M, Xie R, Shi Y, Zhang H, Chen H (2010) Isolation and identification of two flavonoid-producing endophytic fungi from Ginkgo biloba L. Annal Microbiol 60(1):143–150 Rodríguez F, Feist SW, Guillou L, Harkestad LS, Bateman K, Renault T, Mortensen S (2008) Phylogenetic and morphological characterisation of the green algae infesting blue mussel Mytilus edulis in the North and South Atlantic oceans. Dis Aquat Organ 81(3):231–240. https://doi.org/10.3354/dao01956 Sánchez Márquez S, Bills GF, Herrero N, Zabalgogeazcoa Í (2012) Non-systemic fungal endophytes of grasses. Fungal Ecol 5(3):289–297. https://doi.org/10.1016/j.funeco.2010.12.001 Singh B, Kaur P, Gopichand Singh RD, Ahuja PS (2008) Biology and chemistry of Ginkgo biloba. Fitoterapia 79(6):401–418. https://doi.org/10.1016/j.fitote.2008.05.007 Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260:214–216 Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502. https://doi.org/10.1128/MMBR.67.4.491-502.2003 Sun X, Ding Q, Hyde KD, Guo LD (2012) Community structure and preference of endophytic fungi of three woody plants in a mixed forest. Fungal Ecol 5(5):624–632. https://doi.org/10.1016/j.funeco.2012.04.001 Thongsandee W, Matsuda Y, Ito S (2012) Temporal variations in endophytic fungal assemblages of Ginkgo biloba L. J Forest Res 17(2):213–218. https://doi.org/10.1007/s10310-011-0292-3 Toghueo RMK, Zabalgogeazcoa I, Vázquez de Aldana BR, Boyom FF (2017) Enzymatic activity of endophytic fungi from the medicinal plants Terminalia catappa, Terminalia mantaly and Cananga odorata. South Afr J Bot 109:146–153 Trémouillaux-Guiller J, Rohr T, Rohr R, Huss VA (2002) Discovery of an endophytic alga in Ginkgo biloba. Am J Bot 89(5):727–733. https://doi.org/10.3732/ajb.89.5.727 Van Beek TA (2002) Chemical analysis of Ginkgo biloba leaves and extracts. J Chromatogr A 967:21–55 Van Beek TA (2005) Ginkgolides and bilobalide: Their physical, chromatographic and spectroscopic properties. Bioorg Med Chem 13(17):5001–5012 Wang GG, Chen QY, Li W, Lu XH, Zhao X (2015) Ginkgolide B increases hydrogen sulfide and protects against endothelial dysfunction in diabetic rats. Croatian Med J 56:4–13 Wang D, Zhang Y, Li X, Pan H, Chang M, Zheng T, Sun J, Qiu D, Zhang M, Wei D, Qin J (2017) Potential allelopathic azaphilones produced by the endophytic Chaetomium globosum TY1 inhabited in Ginkgo biloba using the one strain-many compounds method. Nat Prod Res 31(6):724–728. https://doi.org/10.1080/14786419.2016.1217208 Weinmann S, Roll S, Schwarzbach C, Vauth C, Willich SN (2010) Effects of Ginkgo biloba in dementia: systematic review and meta-analysis. BMC Geriatr 10:14 Wu X, Zhou C, Du F, Lu Y, Peng B, Chen L et al (2013) Ginkgolide B preconditioning on astrocytes promotes neuronal survival in ischemic injury via up-regulating erythropoietin secretion. Neurochem Int 62:157–164 Wu YY, Zhang TY, Zhang MY, Cheng J, Zhang YX (2018) An endophytic Fungi of Ginkgo biloba L. produces antimicrobial metabolites as potential inhibitors of FtsZ of Staphylococcus aureus. Fitoterapia 128:265–271. https://doi.org/10.1016/j.fitote.2018.05.033 Xiao Y, Li HX, Li C, Wang JX, Li J, Wang MH, Ye YH (2013) Antifungal screening of endophytic fungi from Ginkgo biloba for discovery of potent anti-phytopathogenic fungicides. FEMS Microbiol Lett 339(2):130–136. https://doi.org/10.1111/1574-6968.12065 Xu H, Zhang S, Cheng J, Asem MD, Zhang MY, Manikprabhu D, Zhang TY, Wu YY, Li WJ, Zhang YX (2016) Nocardioides ginkgobilobae sp. nov., an endophytic actinobacterium isolated from the root of the living fossil Ginkgo biloba L. Int J Syst Evol Microbiol 66(5):2013–2018. https://doi.org/10.1099/ijsem.0.000983 Xue M, Zhang Q, Gao JM, Li H, Tian JM, Pescitelli G (2012) Chaetoglobosin Vb from endophytic Chaetomium globosum: absolute configuration of chaetoglobosins. Chirality 24(8):668–674. https://doi.org/10.1002/chir.22068 Yan T, Guo ZK, Jiang R, Wei W, Wang T, Guo Y, Song YC, Jiao RH, Tan RX, Ge HM (2013) New flavonol and diterpenoids from the endophytic fungus Aspergillus sp. YXf3. Planta Med 79(5):348–352. https://doi.org/10.1055/s-0032-1328260 Yan X, Li Y, Wang N, Chen Y, Huang LL (2018a) Streptomyces ginkgonis sp. nov., an endophyte from Ginkgo biloba. Antonie Van Leeuwenhoek 111(6):891–896 Yan W, Cao L-L, Zhang Y-Y, Zhao R, Zhao S-S, Khan B, Ye Y-H (2018b) New metabolites from endophytic fungus Chaetomium globosum CDW7. Molecules 23(11):2873. https://doi.org/10.3390/molecules23112873 Ye Y, Xiao Y, Ma L, Li H, Xie Z, Wang M, Ma H, Tang H, Liu J (2013) Flavipin in Chaetomium globosum CDW7, an endophytic fungus from Ginkgo biloba, contributes to antioxidant activity. Appl Microbiol Biotechnol 97(16):7131–7139 Yoshitake T, Yoshitake S, Kehr J (2010) The Ginkgo biloba extract EGb 761(R) and its main constituent flavonoids and Ginkgolides increase extracellular dopamine levels in the rat prefrontal cortex. Br J Pharmacol 159:659–668 Yu H, Zhang L, Li L, Li W, Han T, Guo L, Qin L (2010) Endophytic fungi from Ginkgo biloba and their biological activities. Zhongguo Zhong Yao Za Zhi 35(16):2133–2137 Yuan B, Wang Z, Qin S, Zhao GH, Feng YJ, Wei LH, Jiang JH (2012) Study of the anti-sapstain fungus activity of Bacillus amyloliquefaciens CGMCC 5569 associated with Ginkgo biloba and identification of its active components. Bioresour Technol 114:536–541 Yuan Y, Tian JM, Xiao J, Shao Q, Gao JM (2014) Bioactive metabolites isolated from Penicillium sp. YY-20, the endophytic fungus from Ginkgo biloba. Nat Prod Res 28(4):278–281. https://doi.org/10.1080/14786419.2013.850686 Yuan Z, Tian Y, He F, Zhou H (2019) Endophytes from Ginkgo biloba and their secondary metabolites. Chin Med 14:51 Zeng Z, Zhu J, Chen L, Wen W, Yu R (2013) Biosynthesis pathways of Ginkgolides. Pharmacog Rev 7:47–52 Zhang S, Chen B, Wu W, Bao L, Qi R (2011) Ginkgolide B reduces inflammatory protein expression in oxidized low-density lipoprotein-stimulated human vascular endothelial cells. J Cardiovasc Pharmacol 57:721–727 Zhang G, Zhang Y, Qin J, Qu X, Liu J, Li X, Pan H (2013) Antifungal metabolites produced by Chaetomium globosum No.04, an endophytic fungus isolated from Ginkgo biloba. Indian J Microbiol 53(2):175–180. https://doi.org/10.1007/s12088-013-0362-7 Zhang W, Wei W, Shi J, Chen C, Zhao G, Jiao R, Tan R (2015) Natural phenolic metabolites from endophytic Aspergillus sp. IFB-YXS with antimicrobial activity. Bioorg Med Chem Lett 25(13):2698–2701 Zhang T, Deng X, Yu Y, Zhang M, Zhang Y (2016) Pseudochaetosphaeronema ginkgonis sp. nov., an endophyte isolated from Ginkgo biloba. Int J Syst Evol Microbiol 66(11):4377–4381 Zhao SS, Zhang YY, Yan W, Cao LL, Xiao Y, Ye YH (2017) Chaetomium globosum CDW7, a potential biological control strain and its antifungal metabolites. FEMS Microbiol Lett. https://doi.org/10.1093/femsle/fnw287 Zhou Z, Zheng S (2003) The missing link in Ginkgo evolution. Nature 423(6942):821–822. https://doi.org/10.1038/423821a Zhou SL, Zhou SL, Wang MX, Chen SL (2011) Two compounds from the endophytic Colletotrichum sp. of Ginkgo biloba. Nat Prod Commun 6(8):1131–1132