Endomorphisms of Free Metabelian Lie Algebras Which Preserve Orbits

Springer Science and Business Media LLC - Tập 45 - Trang 1135-1139 - 2004
I. V. Chirkov1, M. A. Shevelin1
1Omsk State University, USA

Tóm tắt

For the free rank 2 metabelian Lie algebra over an infinite field we prove that an endomorphism of the algebra which preserves the automorphic orbit of a nonzero element is an automorphism. We construct some counterexamples over finite fields.

Tài liệu tham khảo

Shpilrain V., “Recognizing automorphisms of free groups, ” Arch. Math., 62, 385-392 (1994). Shpilrain V., “Generalized primitive elements of a free group, ” Arch. Math., 71, 270-278 (1998). Ivanov S., “On endomorphisms of a free group that preserve primitivity, ” Arch. Math., No. 72, 92-100 (1999). Lee D., “Primitivity preserving endomorphisms of free groups, ” Comm. Algebra, 30, No. 4, 1921-1947 (2002). Lee D., “Endomorphisms of free groups that preserve automorphic orbits, ” J. Algebra, 248, No. 1, 230-236 (2002). Gupta C. K. and Timoshenko E. I., “Automorphic and endomorphic reducibility and primitive endomorphisms of free metabelian groups, ” Comm. Algebra, 25, No. 10, 3057-3070 (1997). Zolotykh A. A. and Mikhalev A. A., “The endomorphisms of free Lie algebras which preserve primitivity of elements are automorphisms, ” Uspekhi Mat. Nauk, 48, No. 6, 149-150 (1993). Mikhalev A. A. and Zolotykh A. A., “Automorphisms and primitive elements of free Lie superalgebras, ” Comm. Algebra, 22, 5889-5901 (1994). Artamonov V. A., “The categories of free metabelian groups and Lie algebras, ” Comm. Math. Univ. Carolinae, 18, No. 1, 143-159 (1977). Artamonov V. V., “Projective metabelian groups and Lie algebras, ” Izv. Akad. Nauk SSSR Ser. Mat., 42, No. 2, 226-236 (1978). Chirkov I. V. and Shevelin M. A., “Test sets in free metabelian Lie algebras, ” Sibirsk. Mat. Zh., 43, No. 6, 1401-1407 (2002).