Endomorphisms of Free Metabelian Lie Algebras Which Preserve Orbits
Tóm tắt
For the free rank 2 metabelian Lie algebra over an infinite field we prove that an endomorphism of the algebra which preserves the automorphic orbit of a nonzero element is an automorphism. We construct some counterexamples over finite fields.
Tài liệu tham khảo
Shpilrain V., “Recognizing automorphisms of free groups, ” Arch. Math., 62, 385-392 (1994).
Shpilrain V., “Generalized primitive elements of a free group, ” Arch. Math., 71, 270-278 (1998).
Ivanov S., “On endomorphisms of a free group that preserve primitivity, ” Arch. Math., No. 72, 92-100 (1999).
Lee D., “Primitivity preserving endomorphisms of free groups, ” Comm. Algebra, 30, No. 4, 1921-1947 (2002).
Lee D., “Endomorphisms of free groups that preserve automorphic orbits, ” J. Algebra, 248, No. 1, 230-236 (2002).
Gupta C. K. and Timoshenko E. I., “Automorphic and endomorphic reducibility and primitive endomorphisms of free metabelian groups, ” Comm. Algebra, 25, No. 10, 3057-3070 (1997).
Zolotykh A. A. and Mikhalev A. A., “The endomorphisms of free Lie algebras which preserve primitivity of elements are automorphisms, ” Uspekhi Mat. Nauk, 48, No. 6, 149-150 (1993).
Mikhalev A. A. and Zolotykh A. A., “Automorphisms and primitive elements of free Lie superalgebras, ” Comm. Algebra, 22, 5889-5901 (1994).
Artamonov V. A., “The categories of free metabelian groups and Lie algebras, ” Comm. Math. Univ. Carolinae, 18, No. 1, 143-159 (1977).
Artamonov V. V., “Projective metabelian groups and Lie algebras, ” Izv. Akad. Nauk SSSR Ser. Mat., 42, No. 2, 226-236 (1978).
Chirkov I. V. and Shevelin M. A., “Test sets in free metabelian Lie algebras, ” Sibirsk. Mat. Zh., 43, No. 6, 1401-1407 (2002).