Endomorphin-2 Modulates Productions of TNF-α, IL-1β, IL-10, and IL-12, and Alters Functions Related to Innate Immune of Macrophages

Inflammation - Tập 26 - Trang 223-232 - 2002
Yasutaka Azuma1, Kiyoshi Ohura1
1Department of Pharmacology, Osaka Dental University, Hirakata, Osaka, Japan

Tóm tắt

We evaluate immunological effects of opioid peptide endomorphin-2 on the production of cytokines related to inflammation and Th1/Th2 balance, and functions related to innate immune of rat peritoneal macrophages. Endomorphin-2 inhibited TNF-α, IL-10, and IL-12 productions, but potentiated IL-1β production by macrophages. Moreover, endomorphin-2 potentiated macrophage adhesion to fibronectin, and the expression of adhesion molecule Mac-1 on macrophages. In contrast, endomorphin-2 suppressed phagocytosis of opsonized E. coli by macrophages, without affecting phagocytosis of non-opsonized E. coli. In addition, endomorphin-2 inhibited macrophage chemotaxis, and the production of superoxide anion by macrophages. These results suggest that endomorphin-2 may alter macrophage functions such as cytokine productions and functions related to innate immune.

Tài liệu tham khảo

Matthes, H. W., R. Maldonado, F. Simonin, O. Valverde, S. Slowe, I. Kitchen, K. Befort, A. Dierich, M. LeMeur, P. Dolle, E. Tzavara, J. Hanoune, B. P. Roques, and B. L. Kieffer. 1996. Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mum-opioid-receptor gene. Nature. 383:819–823. Zadina, J. E., L. Hackler, L.-J. Ge, and A. J. Kastin. 1997. A potent and selective endogenous agonist for the mu-opiate receptor. Nature 386:499–501. Kanjhan, R. 1995. Opioids and pain. Clin. Exp. Pharmacol. Physiol. 22:397-403. Villiger, P. M. and M. Lotz. 1992. Expression of prepro-enkephalin in human articular chondrocytes is linked to cell proliferation. EMBO J. 11:135–143. Stein, C. 1995. The control of pain in peripheral tissue by opioids. N. Engl. J. Med. 332:1685–1692. Azuma, Y. and K. Ohura. 2001. Comparison of the effect of lidocaine-epinephrine and prilocaine-felypressine to alter macrophage functions. Int. Immunopharmacol. 1:911–923. Azuma, Y., M. Shinohara, P. L. Wang, and K. Ohura. 2001. 15-Deoxy-δd12,14-prostaglandin J2 inhibits IL-10 and IL-12 production by macrophages. Biochem. Biophys. Res. Commun. 283:344–346. Azuma, Y., M. Shinohara, P. L. Wang, A. Hidaka, and K. Ohura. 2001. Histamine inhibits chemotaxis, phagocytosis and superoxide anion production, and the production of TNFa and IL-12 by macrophages via H2-receptors. Int. Immunopharmacol. 1:1867–1875. Azuma, Y., P. L. Wang, M. Shinohara, M. Okamura, Y. Inui, Y. Suese, and K. Ohura. 1999. Comparative studies of modulatory effect to the function of rat peritoneal neutrophils treated with new quinolones. Immunol. Lett. 69:321–327. Azuma, Y., M. Shinohara, P. L. Wang, and K. Ohura. 2001. Differentiation by in vitro treatment of lidocaine-epinephrine and prilocaine-felypressine in neutrophils. Immunol. Lett. 77:151–158. Azuma, Y., M. Shinohara, P. L. Wang, and K. Ohura. 2001.Quinolones alter defense reactions mediated by macrophages. Int. Immunopharmacol. 1:179–187. Wan, C. P., C. S. Park, and B. H. S. Lau. 1993. A rapid and simple microfluorometric phagocytosis assay. J. Immunol. Methods. 162:1–7. Azuma, Y., M. Shinohara, P. L. Wang, Y. Suese, H. Yasuda, and K. Ohura. 2000. Comparison of inhibitory effects of local anesthetics on immune functions of neutrophils. Int. J. Immunopharmacol. 22:789–796. Azuma, Y., K. Ohura, P. L. Wang, and M. Shinohara. 2001. Endomorphins 1 and 2 modulate chemotaxis, phagocytosis and superoxide anion production by microglia. J. Neuroimmunol. 119:51–56. Azuma, Y., M. Shinohara, P. L. Wang, and K. Ohura. 2001. 15-Deoxy-δ12,14-prostaglandin J2 is a negative regulator of macrophage functions. Int. Immunopharmacol. 1:2101–2108. Azuma, Y., M. Shinohara, N. Murakawa, M. Endo, and K. Ohura. 1999. Possible interaction between new quinolones and immune functions in macrophages. Gen. Pharmacol. 32:609–614. Pick, E. and D. Mizel. 1981. Rapid microassays for the measurement of superoxide and hydrogen peroxide production by macrophages in culture using an automatic enzyme immunoassay reader. J. Immunol. Methods. 46:211–226. Azuma, Y., P. L. Wang, M. Shinohara, and K. Ohura. Immunomodulation of the neutrophil respiratory burst by endomorphins 1 and 2. Immunol. Lett. 75:55–59. Trinchieri, G. 1994. Interleukin-12: a cytokine produced by antigen-presenting cells with immunoregulatory functions in the generation of T-helper cells type 1 and cytotoxic lymphocytes. Blood 84:4008–4027. Kobayashi, M., L. Fitz, M. Ryan, R. M. Hewick, S. C. Clark, S. Chan, R. Loudon, F. Sherman, B. Perussia, and G. Trinchieri. 1989. Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. J. Exp. Med. 170:827–845. Rousset, F., E. Garcia, T. Defrance, C. Peronne, N. Vezzio, D. H, Hsu, R. Kastelein, K. W. Moore, and J. Banchereau. 1992. Interleukin 10 is a potent growth and differentiation factor for activated human B lymphocytes. Proc. Natl. Acad. Sci. USA. 89:1890–1893. D'Hellencourt, C. L., L. Diaw, P. Cornillet, and M. Guenounou. 1996. Diffrential regulation of TNFα, IL-1β, IL-6, IL-8, TNFβ and IL-10 by pentoxifylline. Int. J. Immunopharmacol. 18:739–748. Hurme, M. 1990. Modulation of interleukin-1b production by cyclic AMP in human monocytes. FEBES Lett. 263:35–37. Strieter, R. M., D. G. Remick, P. A. Ward, R. N. Spengler, J. P. Lynch, J. Larrick, and S. L. Kunkel. 1988. Cellular and molecular regulation of TNF-alpha production by pentoxifylline. Biochem. Biophys. Res. Commun. 155:1230–1236. Endres, S., H. J. Fulle, B. Sinha, D. Stoll, C. A. Dinarello, R. Gerzer, and P. C. Weber. 1991. Cyclic nucleotides differentially regulate the synthesis of tumor necrosis factor-α and interleukin-1β by human mononuclear cells. Immunology. 72:56–60. Schandené, L., P. Vandenbussche, A. Crusiaux, M. L. Algre, D. Abramowicz, E. Dupont, J. Content, and M. Goldman. 1992. Differential effects of pentoxifylline on the production of tumor necrosis factor-β (TNF-α) and interleukin-6 (IL-6) by monocytes and T cells. Immunology. 76:30–40. Song, J. S., S. Y. Sim, D. P. Hong, S. Dal Rhee, C. W. Song, S. S. Han, and S. D. Yang. 2001. Lead treatment in vitro at early developmental stage of bone marrow-derived macrophages enhances NO production through IL-1β and IL-6 but not TNFα. Toxicol. 162:61–68. Beutler, B. 1992. Application of transcriptional and posttranscriptional receptor constructs to the analysis of tumor necrosis factor gene regulation. Am. J. Med. Sci. 303:129–133. Kruys, V., K. Kemmer, A. Shakhov, V. Jongeneel, and B. Beutler. 1992. Constitutive activity of the tumor necrosis factor promoter is canceled by the 3' untranslated region in non macrophage cell lines; a trans-dominant factor overcomes this suppressive effect. Proc. Natl. Acad. Sci. USA. 89:673–677. Welters, I. D., A. Menzebach, Y. Goumon, T. W. Langefeld, H. Teschemacher, G. Hempelmann, and G. B. Stefano. 2000. Morphine suppresses complement receptor expression, phagocytosis, and respiratory burst in neutrophils by a nitric oxide and m3 opiate receptor-dependent mechanism. J. Neuroimmunol. 111:139–145. Szabo, I., M. Rojavin, J. L. Bussiere, T. K. Eisenstein, M. W. Adler, and T. J. Rogers. 1993. Suppression of peritoneal macrophage phagocytosis of Candida albicans by opioids. J. Pharmacol. Exp. Ther. 267:703–706. Ichinose, M., M. Asai, and M. Sawada. 1995. Enhancement of phagocytosis by dynorphin A in mouse peritoneal macrophages. J. Neuroimmunol. 60:37–43. Tomei, E. Z. and F. L. Renaud. 1997. Effect of morphine on Fcmediated phagocytosis by murine macrophages in vitro. J. Neuroimmunol. 74:111–116. Lázaro, M. I., N. Tomassini, I. González, and F. L. Renaud. 2000. Reversibility of morphine effects on phagocytosis by murine macrophages. Drug Alcohol Depend. 58:159–164. Simmons, K. M., K. A. Brown, A. P. Kirk, J. D. Perry, and D. C. Dumonde. 1987. Enhanced chemotaxis of monocytes in rheumatoid arthritis. Br. J. Rheumatol. 26:245–250. Ross, R. 1999. Atherosclerosis-an inflammatory disease. N. Engl. J. Med. 340:115–126. Van Epps, D. E. and Saland, L. 1984. β-endorphin and metenkephalin stimulate human peripheral blood mononuclear cell chemotaxis. J. Immunol. 132:3046–3053. Stefano, G. B., A. Digenis, S. Spector, M. K. Leung, T. V. Bil-finger, M. H. Makman, B. Scharrer, and N. N. Abumrad. 1993. Opiate-like substances in an invertebrate, an opiate receptor on invertebrate and human immunocytes, and a role in immunosuppression. Proc. Natl. Acad. Sci. USA. 90:11099–11103. Miyagi, T., L. F. Chuang, K. M. Lam, H. F. Kung, J. M. Wang, B. I. Osburn, and R. Y. Chuang. 2000. Opioids suppress chemokinemediated migration of monkey neutrophils and monocytes-an instant response. Immunopharmacol. 47:53–62. Campbell, E. J., J. D. Cury, S. D. Shapiro, G. I. Goldberg, and H. G. Welgus. 1991. Neutral proteinases of human mononuclear phagocytes. Cellular differentiation markedly alters cell phenotype for serine proteinases, metalloproteinases, and tissue inhibitor of metalloproteinases. J. Immunol. 146:1286–1293. Watanabe, H., I. Nakanishi, K. Yamashita, T. Hayakawa, and Y. Okada. 1993. Matrix metalloproteinase-9 (92 kDa gelatinase/type IV collagenase) from U937 monoblastoid cells: correlation with cellular invasion. J. Cell Sci. 104:991–999. Welgus, H. G., E. J. Campbell, J. D. Cury, A. Z. Eisen, R. M. Senior, S. M. Wilhelm, and G. I. Goldberg. 1990. Neutral proteinases produced by human mononuclear phagocytes. Enzyme profile, regulation, and expression during cellular development.J. Clin. Invest. 86:1496–1502. Sagar, S., D. Sorbi, L. A. Arbeit, and P. C. Singhal. 1994. Morphine modulates 72-kDa matrix metalloproteinase. Am. J. Physiol. 267:F654–F659. Servant, G., O. D. Weiner, P. Herzmark, T. Balla, J. W. Sedat, and H. R. Bourne. 2000. Polarization of chemoattractant receptor signaling during neutrophil chemotaxis. Science. 287:1037–1040. Sharp, B. M., W. F. Keane, H. J. Suh, G. Gekker, D. Tsukayama, and P. K. Peterson. 1985. Opioid peptides rapidly stimulate superoxide production by human polymorphonuclear leukocytes and macrophages. Endocrinology. 117:793–795. Peterson, P. K., B. Sharp, G. Gekker, C. Brummitt, and W. F. Keane. 1987. Opioid-mediated suppression of cultured peripheral blood mononuclear cell respiratory burst activity. J. Immunol. 138:3907–3912. Peterson, P. K., G. Gekker, C. Brummitt, P. Pentel, M. Bullock, M. Simpson, J. Hitt, and B. Sharp. 1989. Suppression of human peripheral blood mononuclear cell function by methadone and morphine. J. Infect. Dis. 159:480–487. Billert, H., D. Fiszer, L. Drobnik, and M. Kurpisz. 1998. Influence of beta-endorphin on the production of reactive oxygen and nitrogen intermediates by rabbit alveolar macrophages. Gen. Pharmacol. 31:393–397. Gerard, C., L. C. McPhail, A. Marfat, N. P. Stimler-Gerard, D. A. Bass, and C. E. McCall. 1986. Role of protein kinases in stimulation of human polymorphonuclear leukocyte oxidative metabolism by various agonists. J. Clin. Invest. 77:61–65. Ñ50. _Tauber, A. I. 1987. Protein kinase C and the activation of the human neutrophil NADPH-oxidase. Blood. 69:711–720. Kessels, G. C. R., K. Krause, and A. J. Verhoeven. 1993. Protein kinase C activity is not involved in N-formylmethionyl-leucylphenylalanine-induced phospholipase D activation in human neutrophils, but is essential for concomitant NADPH oxidase activation: Studies with a staurosporine analogue with improved selectivity for protein kinase C. Biochem. J. 292:781–785.