Endometallofullerenes and their derivatives: Synthesis, physicochemical properties, and perspective application in biomedicine

Colloids and Surfaces B: Biointerfaces - Tập 222 - Trang 113133 - 2023
Vasiliy T. Lebedev1, Nikolay A. Charykov2, Olga S. Shemchuk3,4, Igor V. Murin4, Dmitry A. Nerukh5, Andrey V. Petrov4, Dmitriy N. Maystrenko6, Oleg E. Molchanov6, Vladimir V. Sharoyko3,4, Konstantin N. Semenov3,4
1Petersburg Nuclear Physics Institute, National Research Center “Kurchatov Institute”, Gatchina 188300, Leningrad Oblast, Russian Federation
2Saint Petersburg State Technological Institute (Technical University), Moskovskii pr. 26, Saint Petersburg 190013, Russian Federation
3Pavlov First Saint Petersburg State Medical University, L'va Tolstogo str. 6-8, Saint Petersburg 197022, Russian Federation
4Institute of Chemistry, Saint Petersburg State University, Universitetskii pr. 26, Saint Petersburg 198504, Russian Federation
5Department of Mathematics, Aston University, Birmingham B4 7ET, UK
6A.M. Granov Russian Research Centre for Radiology and Surgical Technologies, 70 Leningradskaya Ulitsa, Saint Petersburg 197758, Russian Federation

Tài liệu tham khảo

Kroto, 1985, C60: Buckminsterfullerene, Nature, 318, 162, 10.1038/318162a0 Popov, 2013, Endohedral fullerenes, Chem. Rev., 113, 5989, 10.1021/cr300297r Shinohara, 2015 Shakirova, 2021, Synthesis, mass spectroscopy detection, and density functional theory investigations of the Gd endohedral complexes of C82 fullerenols, Computation, 9, 58, 10.3390/computation9050058 Hu, 2019, Crystallographic and theoretical investigations of Er 2 @C 2 n (2 n= 82, 84, 86): indication of distance‐dependent metal–metal bonding nature, Chem. Eur. J., 25, 11538, 10.1002/chem.201902321 Semenov, 2020, Modeling the structure of endohedral Eu@C60 and (Eu@C60)2 metallofullerenes, Russ. J. Gen. Chem., 90, 667, 10.1134/S1070363220040172 Dubrovin, 2019, Endohedral metal-nitride cluster ordering in metallofullerene–Ni II (OEP) complexes and crystals: a theoretical study, Phys. Chem. Chem. Phys., 21, 8197, 10.1039/C9CP00634F Zakharova, 2020, A quantum chemical study of endometallofullerenes: Gd@C70, Gd@C82, Gd@C84, and Gd@C90, Eur. Phys. J. D, 74, 116, 10.1140/epjd/e2020-10109-5 Sinitsa, 2017, Formation of nickel clusters wrapped in carbon cages: toward new endohedral metallofullerene synthesis, Nano Lett., 17, 1082, 10.1021/acs.nanolett.6b04607 Andrade, 2017, Free radical scavenger properties of metal-fullerenes: C60 and C82 with Cu, Ag and Au (atoms and tetramers), Comput. Theor. Chem., 1115, 127, 10.1016/j.comptc.2017.06.015 Kuznetsov, 2012, From carbides to Co5 and Co13 metallofullerenes: first-principles study and design, Am. J. Biomed. Eng., 2, 32, 10.5923/j.ajbe.20120201.05 Poklonski, 2010, Magnetically operated nanorelay based on two single-walled carbon nanotubes filled with endofullerenes Fe@C20, J. Nanophotonics, 4, 10.1117/1.3417104 AlZahrani, 2012, Cerium-doped endohedral fullerene: a density-functional theory study, ISRN Condens. Matter Phys., 2012, 1, 10.5402/2012/208234 Andrade, 2017, Free radical scavenger properties of metal-fullerenes: C60 and C82 with Cu, Ag and Au (atoms and tetramers, Comput. Theor. Chem., 1115, 127, 10.1016/j.comptc.2017.06.015 Kang, 2012, Molecular mechanism of pancreatic tumor metastasis inhibition by Gd@C 82 (OH) 22 and its implication for de novo design of nanomedicine, Proc. Natl. Acad. Sci., 109, 15431, 10.1073/pnas.1204600109 Rad, 2021, DFT calculations towards the geometry optimization, electronic structure, infrared spectroscopy and UV–vis analyses of Favipiravir adsorption on the first-row transition metals doped fullerenes; a new strategy for COVID-19 therapy, Spectrochim. Acta A Mol. Biomol. Spectrosc., 247, 10.1016/j.saa.2020.119082 Poklonski, 2019, Synergy of physical properties of low-dimensional carbon-based systems for nanoscale device design, Mater. Res. Express, 6, 10.1088/2053-1591/aafb1c Popov, 2021, Multiscale modeling strategy to solve fullerene formation mystery, Fuller. Nanotub. Carbon Nanostruct., 29, 755, 10.1080/1536383X.2021.1900124 Bubel, 2000, Totally symmetric vibrational modes of fullerene C60, J. Exp. Theor. Phys. Lett., 71, 508, 10.1134/1.1307477 Heath, 1985, Lanthanum complexes of spheroidal carbon shells, J. Am. Chem. Soc., 107, 7779, 10.1021/ja00311a102 Eletskii, 2002, Carbon nanotubes and their emission properties, Physics-Uspekhi, 45, 369, 10.1070/PU2002v045n04ABEH001033 Eletskii, 2004, Sorption properties of carbon nanostructures, Physics-Uspekhi, 47, 1119, 10.1070/PU2004v047n11ABEH002017 Eletskii, 1995, Fullerenes and carbon structures, Physics-Uspekhi, 38, 935, 10.1070/PU1995v038n09ABEH000103 Eletskii, 2007, Mechanical properties of carbon nanostructures and related materials, Physics-Uspekhi, 50, 225, 10.1070/PU2007v050n03ABEH006188 Troshin, 2008, Organic chemistry of fullerenes: the major reactions, types of fullerene derivatives and prospects for practical use, Russ. Chem. Rev., 77, 323, 10.1070/RC2008v077n04ABEH003770 Tarasov, 2001, Hydrogen-containing carbon nanostructures: synthesis and properties, Russ. Chem. Rev., 70, 131, 10.1070/RC2001v070n02ABEH000621 Osip’yan, 2002, Conductivity of C60 fullerene crystals under dynamic compression up to 200 kbar, JETP Lett., 75, 563, 10.1134/1.1500722 Fullerenes: Chemistry, Physics, and Technology, Wiley, n.d. 〈https://www.wiley.com/en-us/Fullerenes%3A+Chemistry%2C+Physics%2C+and+Technology-p-9780471290896〉, (Accessed 13 May 2021). Arapov, 2003, Solubility in the fullerene C60-fullerene C70-o- C6H14(CH3)2 system, Russ. J. Appl. Chem., 76, 33, 10.1023/A:1023327413281 Semenov, 2009, The solubility of fullerene C60-fullerene C70 mixtures in styrene at 25°C, Russ. J. Phys. Chem. A, 83, 59, 10.1134/S0036024409010130 Keskinov, 2008, Phase equilibria in the fullerene C60-fullerene C 70-hexane-o-xylene-dimethylformamide system, Russ. J. Phys. Chem. A, 82, 10.1134/S0036024408030011 Semenov, 2007, Polythermal solubility of fullerenes in higher isomeric carboxylic acids, Russ. J. Appl. Chem., 80, 38, 10.1134/S1070427207010077 V.P. Sedov, MRI-Contrasting System Based on Water-soluble Fullerene/Gd-Metallofullerene Mixture, 2016. Ruoff, 1993, Anomalous solubility behaviour of C60, Nature, 362, 140, 10.1038/362140a0 Yevlampieva, 2007, Specifics of light scattering in solutions of fullerene-containing polymers, Polym. Sci. Ser. A, 49, 642, 10.1134/S0965545X07060041 Lopatin, 2008, Methyl methacrylate polymerization in the presence of C60 (C70) and molecular characteristics of fullerene-containing poly(methyl methacrylate, Russ. J. Gen. Chem., 78, 1545, 10.1134/S1070363208080136 Evlampieva, 2004, Electro-optical and molecular properties of star-shaped fullerene-containing derivatives of polyvinylpyrrolidone in solutions, High. Mol. Compd., 46, 822 Chiang, 1994, Efficient synthesis of polyhydroxylated fullerene derivatives via hydrolysis of polycyclosulfated precursors, J. Org. Chem., 59, 3960, 10.1021/jo00093a030 H. Kato, Y. Kanazawa, M. Okumura, A. Taninaka, T. Yokawa, H. Shinohara, Lanthanoid endohedral metallofullerenols for MRI contrast agents, J. Am. Chem. Soc., n.d.. 〈https://pubs.acs.org/doi/10.1021/ja027555%2B〉, (Accessed 13 May 2021). Semenov, 2012, FullerenoL - 70-D: synthesis, identification, polythermal solubility and density of water papers, Nanosyst. Phys. Chem. Math., 3, 146 Lebedev, 2014, Polarized-neutron scattering in aqueous solutions of fullerenols in a magnetic field, J. Surf. Investig., 8, 1044, 10.1134/S1027451014050358 Lebedev, 2010, Aggregation in hydroxylated endohedral fullerene solutions, 422 Kozlov, 2014, Synthesis, extraction, and chromatographic purification of higher empty fullerenes and endohedral gadolinium metallofullerenes, Russ. J. Appl. Chem., 87, 121, 10.1134/S1070427214020013 Lebedev, 2015, Ordering of mixed paramagnetic and diamagnetic fullerenols in aqueous solutions under magnetic field, J. Optoelectron. Adv. Mater., 17, 1193 Suyasova, 2015, Clustering of gadolinium endofullerenols in aqueous solutions, Russ. J. Appl. Chem., 88, 1839, 10.1134/S10704272150110154 Szhogina, 2015, Aggregation of iron-containing fullerenols in aqueous solutions, Russ. J. Appl. Chem., 88, 2009, 10.1134/S10704272150120162 Lebedev, 2016, Biocompatible water-soluble endometallofullerenes: peculiarities of self-assembly in aqueous solutions and ordering under an applied magnetic field, Nanosyst. Phys. Chem. Math., 22, 10.17586/2220-8054-2016-7-1-22-29 Lebedev, 2018, Neutron studies of paramagnetic fullerenols’ assembly in aqueous solutions, J. Phys. Conf. Ser., 994, 10.1088/1742-6596/994/1/012005 Suyasova, 2019, Proton spin relaxation in aqueous solutions of self-assembling gadolinium endofullerenols, Appl. Magn. Reson., 50, 1163, 10.1007/s00723-019-01139-3 Zinovyev, 2019, Determination of lanthanides and 3d metals in endometallofullerenes water solutions by X-ray fluorescence spectrometry, Eurasian Union Sci., 4 Cherepanov, 2020, Valence and coordination of iron with carbon in structures based on fullerene C60 according to NGR spectroscopy and EXAFS, Crystallography, 65, 420 Lebedev, 2020, Three-dimensional analysis of the polarization of scattered neutrons of the thermal, cold, and very cold spectrum in studies of the magnetic dynamics of endometallofullerenes, J. Surf. Investig. X-Ray Synchrotron Neutron Tech., 14, 1, 10.1134/S1027451020010103 Lebedev, 2020, Ordering mixtures of diamagnetic and paramagnetic fullerenols in aqueous solutions in magnetic fields, J. Surf. Investig. X-Ray Synchrotron Neutron Tech., 14, S134, 10.1134/S1027451020070290 Grushko, 2010, MRI-contrasting system based on water-soluble fullerene/Gd-metallofullerene mixture, 417 Shevtsov, 2014, Magnetic resonance imaging of Rat C6 glioma model enhanced by using water-soluble gadolinium fullerene, Appl. Magn. Reson, 45, 303, 10.1007/s00723-014-0519-5 Sharoyko, 2021, Biologically active water-soluble fullerene adducts: Das Glasperlenspiel (by H. Hesse)?, J. Mol. Liq., 323, 10.1016/j.molliq.2020.114990 Semenov, 2010, Solubility of light fullerenes in organic solvents, J. Chem. Eng. Data, 55, 13, 10.1021/je900296s Bühl, 2001, Spherical aromaticity of fullerenes, Chem. Rev., 101, 1153, 10.1021/cr990332q Aich, 2016, Aggregation kinetics of higher-order fullerene clusters in aquatic systems, Environ. Sci. Technol., 50, 3562, 10.1021/acs.est.5b05447 A.H. Francis, An Atlas of Fullerenes By P. W. Fowler (University of Exeter), D. E. Manolopoulos (University of Nottingham). Oxford: New York. 1995. viii + 392 pp. $98.00. ISBN 0-19-855787-6., J. Am. Chem. Soc. 118, 1996, pp. 5161–5161. 〈https://doi.org/10.1021/ja955342x〉. Yamamoto, 1996, 13C NMR study on the structure of isolated Sc2@C84 metallofullerene, J. Am. Chem. Soc., 118, 2293, 10.1021/ja953393o Takata, 1995, Confirmation by X-ray diffraction of the endohedral nature of the metallofullerene Y@C82, Nature, 377, 46, 10.1038/377046a0 Takata, 2004, 59 Nishibori, 2000, Giant motion of La atom inside C82 cage, Chem. Phys. Lett., 330, 497, 10.1016/S0009-2614(00)01079-4 Nishibori, 1998, Determination of the cage structure of Sc@C82 by synchrotron powder diffraction, Chem. Phys. Lett., 298, 79, 10.1016/S0009-2614(98)01133-6 Kobayashi, 1998, Structures and electronic states of M@C82 (M=Sc, Y, La and lanthanides, Chem. Phys. Lett., 282, 325, 10.1016/S0009-2614(97)01328-6 Laasonen, 1979, Structural and electronic properties of La@C82, Science, 258, 1916 Nagase, 1993, Metallofullerenes MC82 (M = Sc, Y, and La). A theoretical study of the electronic and structural aspects, Chem. Phys. Lett., 214, 57, 10.1016/0009-2614(93)85455-W Nishibori, 2004, Anomalous endohedral structure of Gd@C82 metallofullerenes, Phys. Rev. B Condens Matter Mater. Phys., 69, 10.1103/PhysRevB.69.113412 Sun, 2005, An anomalous endohedral structure of Eu@C 82 metallofullerenes, Angew. Chem. Int. Ed., 44, 4568, 10.1002/anie.200500876 Giefers, 1999, The ground state and electronic structure of Gd@C82: a systematic theoretical investigation of first principle density functional, Carbon, 37, 721, 10.1016/S0008-6223(98)00261-9 Feng, 2006, Synthesis and characterization of a bisadduct of La@C82, J. Am. Chem. Soc., 128, 5990, 10.1021/ja058390i Senapati, 2004, Electronic transport, structure, and energetics of endohedral Gd@C 82 metallofullerenes, Nano Lett., 4, 2073, 10.1021/nl049164u B. Gao, First Principles Studies of Carbon Based Molecular Materials, n.d. L. Liu, B. Gao, W. Chu, D. Chen, T. Hu, C. Wang, L. Dunsch, A. Marcelli, Y. Luo, Z. Wu, Chem. Commun., 4, 2008, pp. 474–476. Nishibori, 2006, High-resolution analysis of (Sc3C2)@C80 metallofullerene by third generation synchrotron radiation X-ray powder diffraction, J. Phys. Chem. B, 110, 19215, 10.1021/jp061740i Iiduka, 2006, 13C NMR spectroscopic study of scandium dimetallofullerene, Sc2@C84 vs. Sc2C2@C82, Chem. Commun., 2057, 10.1039/b601738j Iiduka, 2007, Experimental and theoretical studies of the scandium carbide endohedral metallofullerene Sc2C2@C82 and its carbene derivative, Angew. Chem. Int. Ed., 46, 5562, 10.1002/anie.200701049 Sobczak, 1997, XAFS study of Fe intercalated fullerite, J. Phys. IV Proc., 7 Dugan, 1996, Buckminsterfullerenol free radical scavengers reduce excitotoxic and apoptotic death of cultured cortical neurons, Neurobiol. Dis., 3, 129, 10.1006/nbdi.1996.0013 Jin, 2000, Polyhydroxylated C60, fullerenols, as glutamate receptor antagonists and neuroprotective agents, J. Neurosci. Res., 62, 600, 10.1002/1097-4547(20001115)62:4<600::AID-JNR15>3.0.CO;2-F Heath, 1998, C60’s smallest cousin, Nature, 393, 730, 10.1038/31579 Li, 2017, Carboxylated fullerene at the oil/water interface, ACS Appl. Mater. Interfaces, 9, 34389, 10.1021/acsami.7b07154 Saunders, 1979, Buckminsterfullerane: the inside story, Science, 253, 330 R.F. Schinazi, A. McMillan, A.S. Juodawlkis, J. Pharr, R. Sijbesma, G. Srdanov, J.-C. Hummelen, F.D. Boudinot, C.L. Hill, F. Wudl, Anti-Human Immunodeficiency Virus, Toxicity in Cell Culture, and Tolerance in Mammals of a Water-Soluble Fullerene, 1994. Almeida Murphy, 1996, Observation of atomlike nitrogen in nitrogen-implanted solid C60, Phys. Rev. Lett., 77, 1075, 10.1103/PhysRevLett.77.1075 Krawez, 2008, Production, HPLC separation and UV–vis spectroscopy of Li@C[sub 70], AIP Conf. Proc., 368 Akasaka, 2002 Kaplan, 2002, The formation and ejection of endohedral CsΓ60+ by low energy collisions (35–220 eV) of Cs+ ions with surface adsorbed C60 molecules, J. Chem. Phys., 117, 3484, 10.1063/1.1491898 Rubin, 1999, 67 Iwamatsu, 2005, Open-cage fullerene derivatives suitable for the encapsulation of a hydrogen molecule, J. Org. Chem., 70, 4820, 10.1021/jo050251w Whetner, 2004, Putting ammonia into a chemically opened fullerene, J. Am. Chem. Soc., 130 Braun, 1995, Dose effect in neutron-irradiated C60: a positron lifetime spectroscopy and DSC study, Chem. Phys. Lett., 238, 290, 10.1016/0009-2614(95)00429-8 Gadd, 1997, Endohedral formation from neutron activation of interstitial rare gas C60 fullerides, Fuller. Sci. Technol., 5, 871, 10.1080/15363839708013305 Gadd, 1998, Evidence for rare gas endohedral fullerene formation from γ recoil from HPLC studies, J. Am. Chem. Soc., 120, 10322, 10.1021/ja9806276 Ohtsuki, 1998, Insertion of Xe and Kr atoms into C60 and C70 fullerenes and the formation of dimers, Phys. Rev. Lett., 81, 967, 10.1103/PhysRevLett.81.967 Ohtsuki, 1996, Insertion of Be atoms in C60 fullerene cages: [formula presented], Phys. Rev. Lett., 77, 3522, 10.1103/PhysRevLett.77.3522 Ohtsuki, 2004, Radiochemical challenges in the study of endohedral fullerenes and MD simulation, J. Radioanal. Nucl. Chem., 262, 165, 10.1023/B:JRNC.0000040869.37749.4b Braun, 1995, The world inside fullerene cages: the physical-chemestry of endohedral X@C2n compounds, CH Models Chem., 132, 245 Krätschmer, 1990, Solid C60: a new form of carbon, Nature, 347, 354, 10.1038/347354a0 Sun, 1997, High-yield extraction of endohedral rare-earth fullerenes, J. Phys. Chem. B, 101, 3927, 10.1021/jp962347n Bubnov, 1994, Production of carbon soot with a high content of C60 and C70 fullerenes by electric arc, Russ. Chem. Bull., 43, 746, 10.1007/BF00717331 Huang, 2000, Toward efficient synthesis of endohedral metallofullerenes by arc discharge of carbon rods containing encapsulated rare earth carbides and ultrasonic Soxhlet extraction, Chem. Mater., 12, 2715, 10.1021/cm000273t Yosida, 1996, Variable range hopping conduction in LaC2, CeC2, or GdC2 crystals encapsulated carbon nanocages, Appl. Phys. Lett., 69, 586, 10.1063/1.117761 Huang, 1998, Relative yields of endohedral lanthanide metallofullerenes by arc synthesis and their correlation with the elution behavior, J. Phys. Chem. B, 102, 10196, 10.1021/jp982926n Lian, 2000, High-yield preparation of endohedral metallofullerenes by an improved DC arc-discharge method, Carbon, 38, 2117, 10.1016/S0008-6223(00)00070-1 Afanas’ev, 1999, Influence of charged particles on the fullerene formation process, Tech. Phys. Lett., 25, 182, 10.1134/1.1262414 Alekseyev, 2001, Arc discharge with a vaporizable anode: why is the Fullerene formation process affected by the kind of buffer gas, Tech. Phys., 46, 1247, 10.1134/1.1412058 Khodorkovskii, 2005, Composition of higher fullerenes obtained by laser ablation of carboniferous materials, Tech. Phys., 50, 1301, 10.1134/1.2103275 Alvarez, 1991, La2C80: a soluble dimetallofullerene, J. Phys. Chem., 95, 10561, 10.1021/j100179a014 Ross, 1992, Production and characterization of metallofullerenes, J. Phys. Chem., 96, 5231, 10.1021/j100192a012 Angeli, 2008, Purification of trimetallic nitride templated endohedral metallofullerenes by a chemical reaction of congeners with eutectic 9-methylanthracene, Chem. Mater., 20, 4993, 10.1021/cm800795q Laukhina, 1998, Novel proficient method for isolation of endometallofullerenes from fullerene-containing soots by two-step o-xylene-N,N-dimethylformamide extraction, J. Mater. Chem., 8, 893, 10.1039/a708385e Lu, 2005, Selective reduction and extraction of Gd@C82 and Gd 2@C80 from soot and the chemical reaction of their anions, Carbon, 43, 1546, 10.1016/j.carbon.2005.01.045 Capp, 1994, High-pressure toluene extraction of La@Cn for even n from 74 to 90, J. Am. Chem. Soc., 116, 4987, 10.1021/ja00090a054 Kubozono, 1996, Extractions of Y @ C60, Ba @ C60, La @ C60, Ce @ C60, Pr @ C60, Nd @ C60, and Gd @ C60 with aniline, J. Am. Chem. Soc., 118, 6998, 10.1021/ja9612460 Suzuki, 1992, Isomers and 13C hyperfine structures of metal-encapsulated fullerenes M@C82 (M = Sc, Y, and La), J. Phys. Chem., 96, 7159, 10.1021/j100197a005 Cagle, 1997, 361 Grushko, 2012, Concentrating of higher metallofullerenes, 351 Akiyama, 2012, Non-HPLC rapid separation of metallofullerenes and empty cages with TiCl 4 Lewis acid, J. Am. Chem. Soc., 134, 9762, 10.1021/ja3030627 Stevenson, 2009, Selective complexation and reactivity of metallic nitride and oxometallic fullerenes with Lewis acids and use as an effective purification method, Inorg. Chem., 48, 11685, 10.1021/ic9017147 Markovic, 2008, Biomedical potential of the reactive oxygen species generation and quenching by fullerenes (C60, Biomaterials, 29, 3561, 10.1016/j.biomaterials.2008.05.005 Yamada, 2020, New horizons in chemical functionalization of endohedral metallofullerenes, Molecules, 25, 3626, 10.3390/molecules25163626 Hummelen, 1995, There is a hole in my bucky, J. Am. Chem. Soc., 117, 7003, 10.1021/ja00131a024 Komatsu, 1979, Encapsulation of molecular hydrogen in fullerene C60 by organic synthesis, Science, 307, 238 Kurotobi, 1979, A single molecule of water encapsulated in fullerene C60, Science, 333, 613 Krachmalnicoff, 2016, The dipolar endofullerene HF@C60, Nat. Chem., 8, 953, 10.1038/nchem.2563 Bloodworth, 2019, First synthesis and characterization of CH 4 @C 60, Angew. Chem. Int. Ed., 58, 5038, 10.1002/anie.201900983 Akasaka, 1997, 13C and139La NMR studies of La2@C80: first evidence for circular motion of metal atoms in endohedral dimetallofullerenes, Angew. Chem. Int. Ed. Engl., 36, 1643, 10.1002/anie.199716431 V.P. Bubnov, I.E. Kareev, A.I. Kotov, E.B.Yagubsky, New approaches to the synthesis of water-soluble endometallofullerenes with gadolinium, in: Proceedings of the Hydrogen Materials Science and Chemistry of Carbon Nanomaterials X International Conference, 2007, p. 1150. Rui, 2013, Synthesis and aggregation studies of Bingel-Hirsch monoadducts of gadofullerene, J. Fuller. Nanotub. Carbon Nanostruct., 21, 549, 10.1080/1536383X.2011.643423 Podolsky, 2020, Thermodynamic properties of the C70(OH)12 fullerenol in the temperature range T = 9.2 K to 304.5 K, J. Chem. Thermodyn., 144, 10.1016/j.jct.2019.106029 Podolsky, 2019, Physico-chemical properties of C 60 (OH) 22–24 water solutions: density, viscosity, refraction index, isobaric heat capacity and antioxidant activity, J. Mol. Liq., 278, 342, 10.1016/j.molliq.2018.12.148 Zhang, 2005, Synthesis of the first dihydroxyl adduct of Gd@C82, Chem. Lett., 34, 1264, 10.1246/cl.2005.1264 A textbook of inorganic chemistry. Edited by J. Newton Friend, D.Sc., Ph.D., F.I.C. Vol. VI. Part II. Phosphorus. By E. B. R. Prideaux, M.A., B.Sc., D.Sc., F.I.C. Pp. xxviii+238. London: C. Griffin & Co., Ltd., 1934. 18s., J. Soc. Chem. Ind., 53, 1934, pp. 746–748. 〈https://doi.org/10.1002/jctb.5000533505〉. Sun, 1999, Synthesis and characterization of a water-soluble endohedral metallofullerol, Chem. Mater., 11, 1003, 10.1021/cm980669t Iezzi, 2002, Synthesis of the first water-soluble trimetallic nitride endohedral metallofullerols, Synth. Met., 128, 289, 10.1016/S0379-6779(02)00034-6 Sueki, 2007, Synthesis of radio-metallofullerenols, J. Radioanal. Nucl. Chem., 272, 505, 10.1007/s10967-007-0612-4 Kato, 2000, Syntheses and EELS characterization of water-soluble multi-hydroxyl Gd@C 82 fullerenols, Chem. Phys. Lett., 324, 255, 10.1016/S0009-2614(00)00599-6 Shu, 2008, Organophosphonate functionalized Gd@C 82 as a magnetic resonance imaging contrast agent, Chem. Mater., 20, 2106, 10.1021/cm7023982 Tóth, 2005, Water-soluble gadofullerenes: toward high-relaxivity, pH-responsive MRI contrast agents, J. Am. Chem. Soc., 127, 799, 10.1021/ja044688h Mikawa, 2001, Paramagnetic water-soluble metallofullerenes having the highest relaxivity for MRI contrast agents, Bioconjug. Chem., 12, 510, 10.1021/bc000136m Bezmel’nitsyn, 1998, Fullerenes in solutions, Physics-Uspekhi, 41, 1091, 10.1070/PU1998v041n11ABEH000502 Semenov, 2010, Solubility of light fullerenes in organic solvents, J. Chem. Eng. Data, 55, 13, 10.1021/je900296s Heymann, 1996, Solubility of C60 in alcohols and alkanes, Carbon, 34, 627, 10.1016/0008-6223(95)00213-8 Scrivens, 1993, Potent solvents for C60 and their utility for the rapid acquisition of 13C NMR data for fullerenes, J. Chem. Soc. Chem. Commun., 1207, 10.1039/c39930001207 Kazuhiro, 1995, High-capacity stationary phases containing heavy atoms for HPLC separation of fullerenes, Anal. Chem., 67, 2556, 10.1021/ac00111a010 Ruoff, 1993, Solubility of fullerene (C60) in a variety of solvents, J. Phys. Chem., 97, 3379, 10.1021/j100115a049 Kolker, 2006, Thermodynamic properties of fullerene C60 solutions in a mixture of tetrachloromethane and toluene, Russ. J. Phys. Chem., 80, 1622, 10.1134/S0036024406100128 Semenov, 2007, Solubility of fullerenes in n-alkanoic acids C2–C9, Russ. J. Appl. Chem., 80, 456, 10.1134/S1070427207030202 Kulkarni, 2008, Solubility of C 60 in solvent mixtures, Environ. Sci. Technol., 42, 845, 10.1021/es071062t Sivaraman, 1994, Solubility of C 70 in organic solvents, Fuller. Sci. Technol., 2, 233, 10.1080/15363839408009549 Heymann, 1996, Solubility of fullerenes C 60 and C 70 in seven normal alcohols and their deduced solubility in water, Fuller. Sci. Technol., 4, 509, 10.1080/10641229608001567 Semenov, 2019, Solubility, thermal analysis, and association of the bis-adducts of light C60 fullerene and amino acids lysine, threonine, and hydroxyproline in aqueous solutions, Russ. J. Phys. Chem. A, 93, 1258, 10.1134/S0036024419070240 Semenov, 2013, Fullerenol- d solubility in fullerenol- d –inorganic salt–water ternary systems at 25 °C, Ind. Eng. Chem. Res., 52, 16095, 10.1021/ie401590g Andrievsky, 1995, On the production of an aqueous colloidal solution of fullerenes, J. Chem. Soc. Chem. Commun., 1281, 10.1039/c39950001281 Khokhryakov, 2007, Colloidal structure and stabilization mechanism of aqueous solutions of unmodified fullerene C60, Crystallogr. Rep., 52, 487, 10.1134/S1063774507030273 Kyzyma, 2016, Impact of a physiological medium on the aggregation state of C60 and C70 fullerenes, J. Surf. Investig. X-Ray Synchrotron Neutron Tech., 10, 1125, 10.1134/S1027451016050517 Kyzyma, 2015, Structure and toxicity of aqueous fullerene C60 solutions, J. Surf. Investig. X-Ray Synchrotron Neutron Tech., 9, 1, 10.1134/S1027451015010127 Kinzyabaeva, 2021, A sonochemical synthesis of the piperazine-containing adducts of the C 60 fullerene, Fuller. Nanotub. Carbon Nanostruct., 29, 601, 10.1080/1536383X.2021.1873782 Aksenov, 2006, Cluster growth and dissolution of fullerenes in non-polar solvents, J. Mol. Liq., 127, 142, 10.1016/j.molliq.2006.03.038 Blau, 1991, Large infrared nonlinear optical response of C60, Phys. Rev. Lett., 67, 1423, 10.1103/PhysRevLett.67.1423 Nath, 2000, Effect of solvent polarity on the aggregation of C 60, Chem. Phys. Lett., 327, 143, 10.1016/S0009-2614(00)00863-0 He, 2013, Synthesis and aggregation studies of bingel-hirsch monoadducts of gadofullerene, Fuller. Nanotub. Carbon Nanostruct., 21, 549, 10.1080/1536383X.2011.643423 Ying, 1994, Solution behavior of buckminsterfullerene (C60) in benzene, J. Chem. Phys., 101, 2665, 10.1063/1.467646 Bulavin, 2001, Self-organization C60 nanoparticles in toluene solution, J. Mol. Liq., 187, 10.1016/S0167-7322(01)00228-8 Bakare, 2005, C60 aggregate structure and geometry in non-polar o-xylene, J. Phys. Chem. B, 109, 87, 10.1021/jp047033b Smorenburg, 1995, Structure and dynamics of C60 in liquid CS2 from neutron scattering, Phys. Rev. E, 52, 2742, 10.1103/PhysRevE.52.2742 Nath, 2002, Effect of solvent polarity on the aggregation of fullerenes: a comparison between C60 and C70, Chem. Phys. Lett., 360, 422, 10.1016/S0009-2614(02)00780-7 Argentine, 1994, Unusual photoluminescence behavior of C70, J. Phys. Chem., 98, 7350, 10.1021/j100081a019 Torok, 2002, Investigation of anomalous clustering of C60 in toluene by small-angle neutron scattering, Solid State Phys., 44, 546, 10.1134/1.1462711 Ginzburg, 2008, Variations in the structure of aromatic solvents under the influence of dissolved fullerene C70, Crystallogr. Rep., 53, 645, 10.1134/S1063774508040159 Ginzburg, 2008, Structuring of aromatic solvents in the presence of small amounts of fullerence C60, Russ. J. Appl. Chem., 81, 618, 10.1134/S1070427208040095 Rudalevige, 1998, Spectroscopic studies of fullerene aggregates, J. Phys. Chem. A, 102, 9797, 10.1021/jp9832591 Prylutskyy, 2001, Structure, vibrational, and calorical properties of fullerene C60 in toluene solution, Fuller. Sci. Technol., 9, 167, 10.1081/FST-100102964 Golubkov, 2001, A study of small-angle X-ray scattering from solutions of fullerence C60 in o-xylene, Russ. J. Phys. Chem., 75, 1667 Ying, 1994, Slow aggregation of buckminsterfullerene (C60) in benzene solution, Chem. Phys. Lett., 219, 214, 10.1016/0009-2614(94)87047-0 Avdeev, 2010, Models of cluster formation of fullerenes in solutions, J. Phys. Chem., 84, 1405 Tropin, 2006, behavior of concentration in the kinetics of dissolution of fullerenes, Lett. ZhETF, 83, 467 B.M. Smirnov, Physics of Fractal Clusters, (n.d.). 〈https://www.studmed.ru/smirnov-bm-fizika-fraktalnyh-klasterov_ab83d47e1af.html〉, (Accessed 13 May 2021). Jullien, 1987, Aggregation phenomena and fractal aggregates, Conte Phys., 28, 477, 10.1080/00107518708213736 Vicsek, 1989, Fractal growth phenomena, Comput. Phys., 3, 108, 10.1063/1.4822864 Ghosh, 1996, Aggregation of Co in solvent mixtures, J. Phys. Chem., 100, 9439, 10.1021/jp9535046 Brant, 2005, Aggregation and deposition characteristics of fullerene nanoparticles in aqueous systems, J. Nanopart. Res., 545, 10.1007/s11051-005-4884-8 Mchedlov-Petrossyan, 2020, Fullerenes in aqueous media: a review, Theor. Exp. Chem., 55, 361, 10.1007/s11237-020-09630-w Mikheev, 2021, Green and rapid preparation of long-term stable aqueous dispersions of fullerenes and endohedral fullerenes: the pros and cons of an ultrasonic probe, Ultrason Sonochem., 73, 10.1016/j.ultsonch.2021.105533 Deguchi, 2007, Stabilization of C60 nanoparticles by protein adsorption and its implications for toxicity studies, Chem. Res. Toxicol., 20, 854, 10.1021/tx6003198 Chen, 2007, Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions, J. Colloid Interface Sci., 309, 126, 10.1016/j.jcis.2007.01.074 Mchedlov-Petrossyan, 1997, Colloidal dispersions of fullerene C60 in water: some properties and regularities of coagulation by electrolytes, J. Chem. Soc. Faraday Trans., 93, 4343, 10.1039/a705494g Shu, 2006, Aggregation studies of the water-soluble gadofullerene magnetic resonance imaging contrast agent: [Gd@C82O6(OH) 16(NHCH2CH2COOH)8]x, J. Phys. Chem. B, 110, 15597, 10.1021/jp0615609 Laus, 2005, Destroying gadofullerene aggregates by salt addition in aqueous solution of Gd@C60(OH)x and Gd@C60[C(COOH2)]10, J. Am. Chem. Soc., 127, 9368, 10.1021/ja052388+ Nikolaev, 2012, Ordering of hydroxylated fullerenes in aqueous solutions, 345 Lebedev, 2013, Structure and self-assembly of fullerene-containing molecular systems, JOAM Balaji Sitharaman, Subashini Asokan, Irene Rusakova, Michael S. Wong, Lon J. Wilson, Nanoscale Aggregation Properties of Neuroprotective Carboxyfullerene (C3) in Aqueous Solution, 2004. 〈https://doi.org/10.1021/NL049315T〉. Jeng, 1999, Study of aggregates of fullerene-based ionomers in aqueous solutions using small angle neutron and X-ray scattering, J. Phys. Chem. B, 103, 1059, 10.1021/jp9834659 Tsao, 2002, In vitro action of carboxyfullerene, J. Antimicrob. Chemother., 49, 641, 10.1093/jac/49.4.641 Scott, 2004, Polymer electrolyte membrane fuel cells: principles and advances, Rev. Environ. Sci. Biotechnol., 3, 273, 10.1007/s11157-004-6884-z Sitharaman, 2007, Gadofullerenes as nanoscale magnetic labels for cellular MRI, Contrast Media Mol. Imaging, 2, 139, 10.1002/cmmi.140 Kirchin, 1998, (PDF) Gadobenate dimeglumine (Gd-BOPTA): an overview, Investig. Radiol., 33, 798, 10.1097/00004424-199811000-00003 Zhang, 2007, Preparation and characterization of two new water-soluble endohedral metallofullerenes as magnetic resonance imaging contrast agents, J. Phys. Chem. B, 111, 14223, 10.1021/jp075529y M. Braddock (Ed.), Biomedical Imaging, Royal Society of Chemistry, Cambridge, 2011. 〈https://doi.org/10.1039/9781849732918〉. Bolskar, 2003, First soluble M @ C60 derivatives provide enhanced access to metallofullerenes and permit in vivo evaluation of Gd @ C60[C(COOH)2]10 as a MRI contrast agent, J. Am. Chem. Soc., 125, 5471, 10.1021/ja0340984 Wike-Hooley, 1984, The relevance of tumour pH to the treatment of malignant disease, Radiother. Oncol., 2, 343, 10.1016/S0167-8140(84)80077-8 Zhou, 2010, Subcellular distribution of polyhydroxylated metallofullerene Gd@C82(OH)22 in different tissues of tumor-bearing mice, J. Nanosci. Nanotechnol., 10, 8597, 10.1166/jnn.2010.2486 Liu, 2018, Identification differential behavior of Gd@C82(OH)22 upon interaction with serum albumin using spectroscopic analysis, Spectrochim. Acta A Mol. Biomol. Spectrosc., 203, 383, 10.1016/j.saa.2018.05.125 Yin, 2009, The scavenging of reactive oxygen species and the potential for cell protection by functionalized fullerene materials, Biomaterials, 30, 611, 10.1016/j.biomaterials.2008.09.061 Liu, 2009, The effect of Gd@C82(OH)22 nanoparticles on the release of Th1/Th2 cytokines and induction of TNF-α mediated cellular immunity, Biomaterials, 30, 3934, 10.1016/j.biomaterials.2009.04.001 Liu, 2009, The effect of Gd@C82(OH)22 nanoparticles on the release of Th1/Th2 cytokines and induction of TNF-α mediated cellular immunity, Biomaterials, 30, 3934, 10.1016/j.biomaterials.2009.04.001 Meng, 2011, Epigenetic modulation of human breast cancer by metallofullerenol nanoparticles: in vivo treatment and in vitro analysis, Nanoscale, 3, 4713, 10.1039/c1nr10898k Liang, 2010, Metallofullerene nanoparticles circumvent tumor resistance to cisplatin by reactivating endocytosis, Proc. Natl. Acad. Sci., 107, 7449, 10.1073/pnas.0909707107 Zhou, 2017, Amino acid functionalized gadofullerene nanoparticles with superior antitumor activity via destruction of tumor vasculature in vivo, Biomaterials, 133, 107, 10.1016/j.biomaterials.2017.04.025 Tóth, 2005, Water-soluble gadofullerenes: toward high-relaxivity, pH-responsive MRI contrast agents, J. Am. Chem. Soc., 127, 799, 10.1021/ja044688h Sitharaman, 2004, Gd@C 60 [C(COOH) 2] 10 and Gd@C 60 (OH) x: nanoscale aggregation studies of two metallofullerene MRI contrast agents in aqueous solution, Nano Lett., 4, 2373, 10.1021/nl0485713 Meng, 2013, Biological characterizations of [Gd@C82(OH)22] n nanoparticles as fullerene derivatives for cancer therapy, Integr. Biol., 5, 43, 10.1039/c2ib20145c Liu, 2009, The effect of Gd@C82(OH)22 nanoparticles on the release of Th1/Th2 cytokines and induction of TNF-α mediated cellular immunity, Biomaterials, 30, 3934, 10.1016/j.biomaterials.2009.04.001 Meng, 2010, Potent angiogenesis inhibition by the particulate form of fullerene derivatives, ACS Nano, 4, 2773, 10.1021/nn100448z Chen, 2018, Charging nanoparticles: increased binding of Gd@C 82 (OH) 22 derivatives to human MMP-9, Nanoscale, 10, 5667, 10.1039/C8NR00127H Meng, 2012, Gadolinium metallofullerenol nanoparticles inhibit cancer metastasis through matrix metalloproteinase inhibition: imprisoning instead of poisoning cancer cells, Nanomedicine, 8, 136, 10.1016/j.nano.2011.08.019 L.B. Piotrovsky, O.I. Kiselev, Fullerenes in Biology, Rostok, Saint Petersburg, 2006. Xu, 2009, Pulmonary responses to polyhydroxylated fullerenols, C60(OH)x, J. Appl. Toxicol., 29, 578, 10.1002/jat.1442 Shinohara, 2000, Endohedral metallofullerenes, Rep. Prog. Phys., 63, 843, 10.1088/0034-4885/63/6/201 Zhen, 2012, Maximizing the relaxivity of Gd-complex by synergistic effect of HSA and carboxylfullerene, ACS Appl. Mater. Interfaces, 4, 3724, 10.1021/am300817z Shultz, 2010, Encapsulation of a radiolabeled cluster inside a fullerene cage, 177LuxLu(3-x)N@C80: an interleukin-13-conjugated radiolabeled metallofullerene platform, J. Am. Chem. Soc., 132, 4980, 10.1021/ja9093617 Shultz, 2010, Encapsulation of a radiolabeled cluster inside a fullerene cage, 177 Lu x Lu (3− x) N@C 80: an interleukin-13-conjugated radiolabeled metallofullerene platform, J. Am. Chem. Soc., 132, 4980, 10.1021/ja9093617 Diener, 2007, 212 Pb@C 60 and its water-soluble derivatives: synthesis, stability, and suitability for radioimmunotherapy, J. Am. Chem. Soc., 129, 5131, 10.1021/ja068639b Lin, 2018, Gd@C 82 (OH) 22 harnesses inflammatory regeneration for osteogenesis of mesenchymal stem cells through JNK/STAT3 signaling pathway, J. Mater. Chem. B, 6, 5802, 10.1039/C8TB01097H Popov, 2013, Endohedral fullerenes, Chem. Rev., 113, 5989, 10.1021/cr300297r Shinohara, 2000, Endohedral metallofullerenes, Rep. Prog. Phys., 63, 843, 10.1088/0034-4885/63/6/201