Endometallofullerenes and their derivatives: Synthesis, physicochemical properties, and perspective application in biomedicine
Tài liệu tham khảo
Kroto, 1985, C60: Buckminsterfullerene, Nature, 318, 162, 10.1038/318162a0
Popov, 2013, Endohedral fullerenes, Chem. Rev., 113, 5989, 10.1021/cr300297r
Shinohara, 2015
Shakirova, 2021, Synthesis, mass spectroscopy detection, and density functional theory investigations of the Gd endohedral complexes of C82 fullerenols, Computation, 9, 58, 10.3390/computation9050058
Hu, 2019, Crystallographic and theoretical investigations of Er 2 @C 2 n (2 n= 82, 84, 86): indication of distance‐dependent metal–metal bonding nature, Chem. Eur. J., 25, 11538, 10.1002/chem.201902321
Semenov, 2020, Modeling the structure of endohedral Eu@C60 and (Eu@C60)2 metallofullerenes, Russ. J. Gen. Chem., 90, 667, 10.1134/S1070363220040172
Dubrovin, 2019, Endohedral metal-nitride cluster ordering in metallofullerene–Ni II (OEP) complexes and crystals: a theoretical study, Phys. Chem. Chem. Phys., 21, 8197, 10.1039/C9CP00634F
Zakharova, 2020, A quantum chemical study of endometallofullerenes: Gd@C70, Gd@C82, Gd@C84, and Gd@C90, Eur. Phys. J. D, 74, 116, 10.1140/epjd/e2020-10109-5
Sinitsa, 2017, Formation of nickel clusters wrapped in carbon cages: toward new endohedral metallofullerene synthesis, Nano Lett., 17, 1082, 10.1021/acs.nanolett.6b04607
Andrade, 2017, Free radical scavenger properties of metal-fullerenes: C60 and C82 with Cu, Ag and Au (atoms and tetramers), Comput. Theor. Chem., 1115, 127, 10.1016/j.comptc.2017.06.015
Kuznetsov, 2012, From carbides to Co5 and Co13 metallofullerenes: first-principles study and design, Am. J. Biomed. Eng., 2, 32, 10.5923/j.ajbe.20120201.05
Poklonski, 2010, Magnetically operated nanorelay based on two single-walled carbon nanotubes filled with endofullerenes Fe@C20, J. Nanophotonics, 4, 10.1117/1.3417104
AlZahrani, 2012, Cerium-doped endohedral fullerene: a density-functional theory study, ISRN Condens. Matter Phys., 2012, 1, 10.5402/2012/208234
Andrade, 2017, Free radical scavenger properties of metal-fullerenes: C60 and C82 with Cu, Ag and Au (atoms and tetramers, Comput. Theor. Chem., 1115, 127, 10.1016/j.comptc.2017.06.015
Kang, 2012, Molecular mechanism of pancreatic tumor metastasis inhibition by Gd@C 82 (OH) 22 and its implication for de novo design of nanomedicine, Proc. Natl. Acad. Sci., 109, 15431, 10.1073/pnas.1204600109
Rad, 2021, DFT calculations towards the geometry optimization, electronic structure, infrared spectroscopy and UV–vis analyses of Favipiravir adsorption on the first-row transition metals doped fullerenes; a new strategy for COVID-19 therapy, Spectrochim. Acta A Mol. Biomol. Spectrosc., 247, 10.1016/j.saa.2020.119082
Poklonski, 2019, Synergy of physical properties of low-dimensional carbon-based systems for nanoscale device design, Mater. Res. Express, 6, 10.1088/2053-1591/aafb1c
Popov, 2021, Multiscale modeling strategy to solve fullerene formation mystery, Fuller. Nanotub. Carbon Nanostruct., 29, 755, 10.1080/1536383X.2021.1900124
Bubel, 2000, Totally symmetric vibrational modes of fullerene C60, J. Exp. Theor. Phys. Lett., 71, 508, 10.1134/1.1307477
Heath, 1985, Lanthanum complexes of spheroidal carbon shells, J. Am. Chem. Soc., 107, 7779, 10.1021/ja00311a102
Eletskii, 2002, Carbon nanotubes and their emission properties, Physics-Uspekhi, 45, 369, 10.1070/PU2002v045n04ABEH001033
Eletskii, 2004, Sorption properties of carbon nanostructures, Physics-Uspekhi, 47, 1119, 10.1070/PU2004v047n11ABEH002017
Eletskii, 1995, Fullerenes and carbon structures, Physics-Uspekhi, 38, 935, 10.1070/PU1995v038n09ABEH000103
Eletskii, 2007, Mechanical properties of carbon nanostructures and related materials, Physics-Uspekhi, 50, 225, 10.1070/PU2007v050n03ABEH006188
Troshin, 2008, Organic chemistry of fullerenes: the major reactions, types of fullerene derivatives and prospects for practical use, Russ. Chem. Rev., 77, 323, 10.1070/RC2008v077n04ABEH003770
Tarasov, 2001, Hydrogen-containing carbon nanostructures: synthesis and properties, Russ. Chem. Rev., 70, 131, 10.1070/RC2001v070n02ABEH000621
Osip’yan, 2002, Conductivity of C60 fullerene crystals under dynamic compression up to 200 kbar, JETP Lett., 75, 563, 10.1134/1.1500722
Fullerenes: Chemistry, Physics, and Technology, Wiley, n.d. 〈https://www.wiley.com/en-us/Fullerenes%3A+Chemistry%2C+Physics%2C+and+Technology-p-9780471290896〉, (Accessed 13 May 2021).
Arapov, 2003, Solubility in the fullerene C60-fullerene C70-o- C6H14(CH3)2 system, Russ. J. Appl. Chem., 76, 33, 10.1023/A:1023327413281
Semenov, 2009, The solubility of fullerene C60-fullerene C70 mixtures in styrene at 25°C, Russ. J. Phys. Chem. A, 83, 59, 10.1134/S0036024409010130
Keskinov, 2008, Phase equilibria in the fullerene C60-fullerene C 70-hexane-o-xylene-dimethylformamide system, Russ. J. Phys. Chem. A, 82, 10.1134/S0036024408030011
Semenov, 2007, Polythermal solubility of fullerenes in higher isomeric carboxylic acids, Russ. J. Appl. Chem., 80, 38, 10.1134/S1070427207010077
V.P. Sedov, MRI-Contrasting System Based on Water-soluble Fullerene/Gd-Metallofullerene Mixture, 2016.
Ruoff, 1993, Anomalous solubility behaviour of C60, Nature, 362, 140, 10.1038/362140a0
Yevlampieva, 2007, Specifics of light scattering in solutions of fullerene-containing polymers, Polym. Sci. Ser. A, 49, 642, 10.1134/S0965545X07060041
Lopatin, 2008, Methyl methacrylate polymerization in the presence of C60 (C70) and molecular characteristics of fullerene-containing poly(methyl methacrylate, Russ. J. Gen. Chem., 78, 1545, 10.1134/S1070363208080136
Evlampieva, 2004, Electro-optical and molecular properties of star-shaped fullerene-containing derivatives of polyvinylpyrrolidone in solutions, High. Mol. Compd., 46, 822
Chiang, 1994, Efficient synthesis of polyhydroxylated fullerene derivatives via hydrolysis of polycyclosulfated precursors, J. Org. Chem., 59, 3960, 10.1021/jo00093a030
H. Kato, Y. Kanazawa, M. Okumura, A. Taninaka, T. Yokawa, H. Shinohara, Lanthanoid endohedral metallofullerenols for MRI contrast agents, J. Am. Chem. Soc., n.d.. 〈https://pubs.acs.org/doi/10.1021/ja027555%2B〉, (Accessed 13 May 2021).
Semenov, 2012, FullerenoL - 70-D: synthesis, identification, polythermal solubility and density of water papers, Nanosyst. Phys. Chem. Math., 3, 146
Lebedev, 2014, Polarized-neutron scattering in aqueous solutions of fullerenols in a magnetic field, J. Surf. Investig., 8, 1044, 10.1134/S1027451014050358
Lebedev, 2010, Aggregation in hydroxylated endohedral fullerene solutions, 422
Kozlov, 2014, Synthesis, extraction, and chromatographic purification of higher empty fullerenes and endohedral gadolinium metallofullerenes, Russ. J. Appl. Chem., 87, 121, 10.1134/S1070427214020013
Lebedev, 2015, Ordering of mixed paramagnetic and diamagnetic fullerenols in aqueous solutions under magnetic field, J. Optoelectron. Adv. Mater., 17, 1193
Suyasova, 2015, Clustering of gadolinium endofullerenols in aqueous solutions, Russ. J. Appl. Chem., 88, 1839, 10.1134/S10704272150110154
Szhogina, 2015, Aggregation of iron-containing fullerenols in aqueous solutions, Russ. J. Appl. Chem., 88, 2009, 10.1134/S10704272150120162
Lebedev, 2016, Biocompatible water-soluble endometallofullerenes: peculiarities of self-assembly in aqueous solutions and ordering under an applied magnetic field, Nanosyst. Phys. Chem. Math., 22, 10.17586/2220-8054-2016-7-1-22-29
Lebedev, 2018, Neutron studies of paramagnetic fullerenols’ assembly in aqueous solutions, J. Phys. Conf. Ser., 994, 10.1088/1742-6596/994/1/012005
Suyasova, 2019, Proton spin relaxation in aqueous solutions of self-assembling gadolinium endofullerenols, Appl. Magn. Reson., 50, 1163, 10.1007/s00723-019-01139-3
Zinovyev, 2019, Determination of lanthanides and 3d metals in endometallofullerenes water solutions by X-ray fluorescence spectrometry, Eurasian Union Sci., 4
Cherepanov, 2020, Valence and coordination of iron with carbon in structures based on fullerene C60 according to NGR spectroscopy and EXAFS, Crystallography, 65, 420
Lebedev, 2020, Three-dimensional analysis of the polarization of scattered neutrons of the thermal, cold, and very cold spectrum in studies of the magnetic dynamics of endometallofullerenes, J. Surf. Investig. X-Ray Synchrotron Neutron Tech., 14, 1, 10.1134/S1027451020010103
Lebedev, 2020, Ordering mixtures of diamagnetic and paramagnetic fullerenols in aqueous solutions in magnetic fields, J. Surf. Investig. X-Ray Synchrotron Neutron Tech., 14, S134, 10.1134/S1027451020070290
Grushko, 2010, MRI-contrasting system based on water-soluble fullerene/Gd-metallofullerene mixture, 417
Shevtsov, 2014, Magnetic resonance imaging of Rat C6 glioma model enhanced by using water-soluble gadolinium fullerene, Appl. Magn. Reson, 45, 303, 10.1007/s00723-014-0519-5
Sharoyko, 2021, Biologically active water-soluble fullerene adducts: Das Glasperlenspiel (by H. Hesse)?, J. Mol. Liq., 323, 10.1016/j.molliq.2020.114990
Semenov, 2010, Solubility of light fullerenes in organic solvents, J. Chem. Eng. Data, 55, 13, 10.1021/je900296s
Bühl, 2001, Spherical aromaticity of fullerenes, Chem. Rev., 101, 1153, 10.1021/cr990332q
Aich, 2016, Aggregation kinetics of higher-order fullerene clusters in aquatic systems, Environ. Sci. Technol., 50, 3562, 10.1021/acs.est.5b05447
A.H. Francis, An Atlas of Fullerenes By P. W. Fowler (University of Exeter), D. E. Manolopoulos (University of Nottingham). Oxford: New York. 1995. viii + 392 pp. $98.00. ISBN 0-19-855787-6., J. Am. Chem. Soc. 118, 1996, pp. 5161–5161. 〈https://doi.org/10.1021/ja955342x〉.
Yamamoto, 1996, 13C NMR study on the structure of isolated Sc2@C84 metallofullerene, J. Am. Chem. Soc., 118, 2293, 10.1021/ja953393o
Takata, 1995, Confirmation by X-ray diffraction of the endohedral nature of the metallofullerene Y@C82, Nature, 377, 46, 10.1038/377046a0
Takata, 2004, 59
Nishibori, 2000, Giant motion of La atom inside C82 cage, Chem. Phys. Lett., 330, 497, 10.1016/S0009-2614(00)01079-4
Nishibori, 1998, Determination of the cage structure of Sc@C82 by synchrotron powder diffraction, Chem. Phys. Lett., 298, 79, 10.1016/S0009-2614(98)01133-6
Kobayashi, 1998, Structures and electronic states of M@C82 (M=Sc, Y, La and lanthanides, Chem. Phys. Lett., 282, 325, 10.1016/S0009-2614(97)01328-6
Laasonen, 1979, Structural and electronic properties of La@C82, Science, 258, 1916
Nagase, 1993, Metallofullerenes MC82 (M = Sc, Y, and La). A theoretical study of the electronic and structural aspects, Chem. Phys. Lett., 214, 57, 10.1016/0009-2614(93)85455-W
Nishibori, 2004, Anomalous endohedral structure of Gd@C82 metallofullerenes, Phys. Rev. B Condens Matter Mater. Phys., 69, 10.1103/PhysRevB.69.113412
Sun, 2005, An anomalous endohedral structure of Eu@C 82 metallofullerenes, Angew. Chem. Int. Ed., 44, 4568, 10.1002/anie.200500876
Giefers, 1999, The ground state and electronic structure of Gd@C82: a systematic theoretical investigation of first principle density functional, Carbon, 37, 721, 10.1016/S0008-6223(98)00261-9
Feng, 2006, Synthesis and characterization of a bisadduct of La@C82, J. Am. Chem. Soc., 128, 5990, 10.1021/ja058390i
Senapati, 2004, Electronic transport, structure, and energetics of endohedral Gd@C 82 metallofullerenes, Nano Lett., 4, 2073, 10.1021/nl049164u
B. Gao, First Principles Studies of Carbon Based Molecular Materials, n.d.
L. Liu, B. Gao, W. Chu, D. Chen, T. Hu, C. Wang, L. Dunsch, A. Marcelli, Y. Luo, Z. Wu, Chem. Commun., 4, 2008, pp. 474–476.
Nishibori, 2006, High-resolution analysis of (Sc3C2)@C80 metallofullerene by third generation synchrotron radiation X-ray powder diffraction, J. Phys. Chem. B, 110, 19215, 10.1021/jp061740i
Iiduka, 2006, 13C NMR spectroscopic study of scandium dimetallofullerene, Sc2@C84 vs. Sc2C2@C82, Chem. Commun., 2057, 10.1039/b601738j
Iiduka, 2007, Experimental and theoretical studies of the scandium carbide endohedral metallofullerene Sc2C2@C82 and its carbene derivative, Angew. Chem. Int. Ed., 46, 5562, 10.1002/anie.200701049
Sobczak, 1997, XAFS study of Fe intercalated fullerite, J. Phys. IV Proc., 7
Dugan, 1996, Buckminsterfullerenol free radical scavengers reduce excitotoxic and apoptotic death of cultured cortical neurons, Neurobiol. Dis., 3, 129, 10.1006/nbdi.1996.0013
Jin, 2000, Polyhydroxylated C60, fullerenols, as glutamate receptor antagonists and neuroprotective agents, J. Neurosci. Res., 62, 600, 10.1002/1097-4547(20001115)62:4<600::AID-JNR15>3.0.CO;2-F
Heath, 1998, C60’s smallest cousin, Nature, 393, 730, 10.1038/31579
Li, 2017, Carboxylated fullerene at the oil/water interface, ACS Appl. Mater. Interfaces, 9, 34389, 10.1021/acsami.7b07154
Saunders, 1979, Buckminsterfullerane: the inside story, Science, 253, 330
R.F. Schinazi, A. McMillan, A.S. Juodawlkis, J. Pharr, R. Sijbesma, G. Srdanov, J.-C. Hummelen, F.D. Boudinot, C.L. Hill, F. Wudl, Anti-Human Immunodeficiency Virus, Toxicity in Cell Culture, and Tolerance in Mammals of a Water-Soluble Fullerene, 1994.
Almeida Murphy, 1996, Observation of atomlike nitrogen in nitrogen-implanted solid C60, Phys. Rev. Lett., 77, 1075, 10.1103/PhysRevLett.77.1075
Krawez, 2008, Production, HPLC separation and UV–vis spectroscopy of Li@C[sub 70], AIP Conf. Proc., 368
Akasaka, 2002
Kaplan, 2002, The formation and ejection of endohedral CsΓ60+ by low energy collisions (35–220 eV) of Cs+ ions with surface adsorbed C60 molecules, J. Chem. Phys., 117, 3484, 10.1063/1.1491898
Rubin, 1999, 67
Iwamatsu, 2005, Open-cage fullerene derivatives suitable for the encapsulation of a hydrogen molecule, J. Org. Chem., 70, 4820, 10.1021/jo050251w
Whetner, 2004, Putting ammonia into a chemically opened fullerene, J. Am. Chem. Soc., 130
Braun, 1995, Dose effect in neutron-irradiated C60: a positron lifetime spectroscopy and DSC study, Chem. Phys. Lett., 238, 290, 10.1016/0009-2614(95)00429-8
Gadd, 1997, Endohedral formation from neutron activation of interstitial rare gas C60 fullerides, Fuller. Sci. Technol., 5, 871, 10.1080/15363839708013305
Gadd, 1998, Evidence for rare gas endohedral fullerene formation from γ recoil from HPLC studies, J. Am. Chem. Soc., 120, 10322, 10.1021/ja9806276
Ohtsuki, 1998, Insertion of Xe and Kr atoms into C60 and C70 fullerenes and the formation of dimers, Phys. Rev. Lett., 81, 967, 10.1103/PhysRevLett.81.967
Ohtsuki, 1996, Insertion of Be atoms in C60 fullerene cages: [formula presented], Phys. Rev. Lett., 77, 3522, 10.1103/PhysRevLett.77.3522
Ohtsuki, 2004, Radiochemical challenges in the study of endohedral fullerenes and MD simulation, J. Radioanal. Nucl. Chem., 262, 165, 10.1023/B:JRNC.0000040869.37749.4b
Braun, 1995, The world inside fullerene cages: the physical-chemestry of endohedral X@C2n compounds, CH Models Chem., 132, 245
Krätschmer, 1990, Solid C60: a new form of carbon, Nature, 347, 354, 10.1038/347354a0
Sun, 1997, High-yield extraction of endohedral rare-earth fullerenes, J. Phys. Chem. B, 101, 3927, 10.1021/jp962347n
Bubnov, 1994, Production of carbon soot with a high content of C60 and C70 fullerenes by electric arc, Russ. Chem. Bull., 43, 746, 10.1007/BF00717331
Huang, 2000, Toward efficient synthesis of endohedral metallofullerenes by arc discharge of carbon rods containing encapsulated rare earth carbides and ultrasonic Soxhlet extraction, Chem. Mater., 12, 2715, 10.1021/cm000273t
Yosida, 1996, Variable range hopping conduction in LaC2, CeC2, or GdC2 crystals encapsulated carbon nanocages, Appl. Phys. Lett., 69, 586, 10.1063/1.117761
Huang, 1998, Relative yields of endohedral lanthanide metallofullerenes by arc synthesis and their correlation with the elution behavior, J. Phys. Chem. B, 102, 10196, 10.1021/jp982926n
Lian, 2000, High-yield preparation of endohedral metallofullerenes by an improved DC arc-discharge method, Carbon, 38, 2117, 10.1016/S0008-6223(00)00070-1
Afanas’ev, 1999, Influence of charged particles on the fullerene formation process, Tech. Phys. Lett., 25, 182, 10.1134/1.1262414
Alekseyev, 2001, Arc discharge with a vaporizable anode: why is the Fullerene formation process affected by the kind of buffer gas, Tech. Phys., 46, 1247, 10.1134/1.1412058
Khodorkovskii, 2005, Composition of higher fullerenes obtained by laser ablation of carboniferous materials, Tech. Phys., 50, 1301, 10.1134/1.2103275
Alvarez, 1991, La2C80: a soluble dimetallofullerene, J. Phys. Chem., 95, 10561, 10.1021/j100179a014
Ross, 1992, Production and characterization of metallofullerenes, J. Phys. Chem., 96, 5231, 10.1021/j100192a012
Angeli, 2008, Purification of trimetallic nitride templated endohedral metallofullerenes by a chemical reaction of congeners with eutectic 9-methylanthracene, Chem. Mater., 20, 4993, 10.1021/cm800795q
Laukhina, 1998, Novel proficient method for isolation of endometallofullerenes from fullerene-containing soots by two-step o-xylene-N,N-dimethylformamide extraction, J. Mater. Chem., 8, 893, 10.1039/a708385e
Lu, 2005, Selective reduction and extraction of Gd@C82 and Gd 2@C80 from soot and the chemical reaction of their anions, Carbon, 43, 1546, 10.1016/j.carbon.2005.01.045
Capp, 1994, High-pressure toluene extraction of La@Cn for even n from 74 to 90, J. Am. Chem. Soc., 116, 4987, 10.1021/ja00090a054
Kubozono, 1996, Extractions of Y @ C60, Ba @ C60, La @ C60, Ce @ C60, Pr @ C60, Nd @ C60, and Gd @ C60 with aniline, J. Am. Chem. Soc., 118, 6998, 10.1021/ja9612460
Suzuki, 1992, Isomers and 13C hyperfine structures of metal-encapsulated fullerenes M@C82 (M = Sc, Y, and La), J. Phys. Chem., 96, 7159, 10.1021/j100197a005
Cagle, 1997, 361
Grushko, 2012, Concentrating of higher metallofullerenes, 351
Akiyama, 2012, Non-HPLC rapid separation of metallofullerenes and empty cages with TiCl 4 Lewis acid, J. Am. Chem. Soc., 134, 9762, 10.1021/ja3030627
Stevenson, 2009, Selective complexation and reactivity of metallic nitride and oxometallic fullerenes with Lewis acids and use as an effective purification method, Inorg. Chem., 48, 11685, 10.1021/ic9017147
Markovic, 2008, Biomedical potential of the reactive oxygen species generation and quenching by fullerenes (C60, Biomaterials, 29, 3561, 10.1016/j.biomaterials.2008.05.005
Yamada, 2020, New horizons in chemical functionalization of endohedral metallofullerenes, Molecules, 25, 3626, 10.3390/molecules25163626
Hummelen, 1995, There is a hole in my bucky, J. Am. Chem. Soc., 117, 7003, 10.1021/ja00131a024
Komatsu, 1979, Encapsulation of molecular hydrogen in fullerene C60 by organic synthesis, Science, 307, 238
Kurotobi, 1979, A single molecule of water encapsulated in fullerene C60, Science, 333, 613
Krachmalnicoff, 2016, The dipolar endofullerene HF@C60, Nat. Chem., 8, 953, 10.1038/nchem.2563
Bloodworth, 2019, First synthesis and characterization of CH 4 @C 60, Angew. Chem. Int. Ed., 58, 5038, 10.1002/anie.201900983
Akasaka, 1997, 13C and139La NMR studies of La2@C80: first evidence for circular motion of metal atoms in endohedral dimetallofullerenes, Angew. Chem. Int. Ed. Engl., 36, 1643, 10.1002/anie.199716431
V.P. Bubnov, I.E. Kareev, A.I. Kotov, E.B.Yagubsky, New approaches to the synthesis of water-soluble endometallofullerenes with gadolinium, in: Proceedings of the Hydrogen Materials Science and Chemistry of Carbon Nanomaterials X International Conference, 2007, p. 1150.
Rui, 2013, Synthesis and aggregation studies of Bingel-Hirsch monoadducts of gadofullerene, J. Fuller. Nanotub. Carbon Nanostruct., 21, 549, 10.1080/1536383X.2011.643423
Podolsky, 2020, Thermodynamic properties of the C70(OH)12 fullerenol in the temperature range T = 9.2 K to 304.5 K, J. Chem. Thermodyn., 144, 10.1016/j.jct.2019.106029
Podolsky, 2019, Physico-chemical properties of C 60 (OH) 22–24 water solutions: density, viscosity, refraction index, isobaric heat capacity and antioxidant activity, J. Mol. Liq., 278, 342, 10.1016/j.molliq.2018.12.148
Zhang, 2005, Synthesis of the first dihydroxyl adduct of Gd@C82, Chem. Lett., 34, 1264, 10.1246/cl.2005.1264
A textbook of inorganic chemistry. Edited by J. Newton Friend, D.Sc., Ph.D., F.I.C. Vol. VI. Part II. Phosphorus. By E. B. R. Prideaux, M.A., B.Sc., D.Sc., F.I.C. Pp. xxviii+238. London: C. Griffin & Co., Ltd., 1934. 18s., J. Soc. Chem. Ind., 53, 1934, pp. 746–748. 〈https://doi.org/10.1002/jctb.5000533505〉.
Sun, 1999, Synthesis and characterization of a water-soluble endohedral metallofullerol, Chem. Mater., 11, 1003, 10.1021/cm980669t
Iezzi, 2002, Synthesis of the first water-soluble trimetallic nitride endohedral metallofullerols, Synth. Met., 128, 289, 10.1016/S0379-6779(02)00034-6
Sueki, 2007, Synthesis of radio-metallofullerenols, J. Radioanal. Nucl. Chem., 272, 505, 10.1007/s10967-007-0612-4
Kato, 2000, Syntheses and EELS characterization of water-soluble multi-hydroxyl Gd@C 82 fullerenols, Chem. Phys. Lett., 324, 255, 10.1016/S0009-2614(00)00599-6
Shu, 2008, Organophosphonate functionalized Gd@C 82 as a magnetic resonance imaging contrast agent, Chem. Mater., 20, 2106, 10.1021/cm7023982
Tóth, 2005, Water-soluble gadofullerenes: toward high-relaxivity, pH-responsive MRI contrast agents, J. Am. Chem. Soc., 127, 799, 10.1021/ja044688h
Mikawa, 2001, Paramagnetic water-soluble metallofullerenes having the highest relaxivity for MRI contrast agents, Bioconjug. Chem., 12, 510, 10.1021/bc000136m
Bezmel’nitsyn, 1998, Fullerenes in solutions, Physics-Uspekhi, 41, 1091, 10.1070/PU1998v041n11ABEH000502
Semenov, 2010, Solubility of light fullerenes in organic solvents, J. Chem. Eng. Data, 55, 13, 10.1021/je900296s
Heymann, 1996, Solubility of C60 in alcohols and alkanes, Carbon, 34, 627, 10.1016/0008-6223(95)00213-8
Scrivens, 1993, Potent solvents for C60 and their utility for the rapid acquisition of 13C NMR data for fullerenes, J. Chem. Soc. Chem. Commun., 1207, 10.1039/c39930001207
Kazuhiro, 1995, High-capacity stationary phases containing heavy atoms for HPLC separation of fullerenes, Anal. Chem., 67, 2556, 10.1021/ac00111a010
Ruoff, 1993, Solubility of fullerene (C60) in a variety of solvents, J. Phys. Chem., 97, 3379, 10.1021/j100115a049
Kolker, 2006, Thermodynamic properties of fullerene C60 solutions in a mixture of tetrachloromethane and toluene, Russ. J. Phys. Chem., 80, 1622, 10.1134/S0036024406100128
Semenov, 2007, Solubility of fullerenes in n-alkanoic acids C2–C9, Russ. J. Appl. Chem., 80, 456, 10.1134/S1070427207030202
Kulkarni, 2008, Solubility of C 60 in solvent mixtures, Environ. Sci. Technol., 42, 845, 10.1021/es071062t
Sivaraman, 1994, Solubility of C 70 in organic solvents, Fuller. Sci. Technol., 2, 233, 10.1080/15363839408009549
Heymann, 1996, Solubility of fullerenes C 60 and C 70 in seven normal alcohols and their deduced solubility in water, Fuller. Sci. Technol., 4, 509, 10.1080/10641229608001567
Semenov, 2019, Solubility, thermal analysis, and association of the bis-adducts of light C60 fullerene and amino acids lysine, threonine, and hydroxyproline in aqueous solutions, Russ. J. Phys. Chem. A, 93, 1258, 10.1134/S0036024419070240
Semenov, 2013, Fullerenol- d solubility in fullerenol- d –inorganic salt–water ternary systems at 25 °C, Ind. Eng. Chem. Res., 52, 16095, 10.1021/ie401590g
Andrievsky, 1995, On the production of an aqueous colloidal solution of fullerenes, J. Chem. Soc. Chem. Commun., 1281, 10.1039/c39950001281
Khokhryakov, 2007, Colloidal structure and stabilization mechanism of aqueous solutions of unmodified fullerene C60, Crystallogr. Rep., 52, 487, 10.1134/S1063774507030273
Kyzyma, 2016, Impact of a physiological medium on the aggregation state of C60 and C70 fullerenes, J. Surf. Investig. X-Ray Synchrotron Neutron Tech., 10, 1125, 10.1134/S1027451016050517
Kyzyma, 2015, Structure and toxicity of aqueous fullerene C60 solutions, J. Surf. Investig. X-Ray Synchrotron Neutron Tech., 9, 1, 10.1134/S1027451015010127
Kinzyabaeva, 2021, A sonochemical synthesis of the piperazine-containing adducts of the C 60 fullerene, Fuller. Nanotub. Carbon Nanostruct., 29, 601, 10.1080/1536383X.2021.1873782
Aksenov, 2006, Cluster growth and dissolution of fullerenes in non-polar solvents, J. Mol. Liq., 127, 142, 10.1016/j.molliq.2006.03.038
Blau, 1991, Large infrared nonlinear optical response of C60, Phys. Rev. Lett., 67, 1423, 10.1103/PhysRevLett.67.1423
Nath, 2000, Effect of solvent polarity on the aggregation of C 60, Chem. Phys. Lett., 327, 143, 10.1016/S0009-2614(00)00863-0
He, 2013, Synthesis and aggregation studies of bingel-hirsch monoadducts of gadofullerene, Fuller. Nanotub. Carbon Nanostruct., 21, 549, 10.1080/1536383X.2011.643423
Ying, 1994, Solution behavior of buckminsterfullerene (C60) in benzene, J. Chem. Phys., 101, 2665, 10.1063/1.467646
Bulavin, 2001, Self-organization C60 nanoparticles in toluene solution, J. Mol. Liq., 187, 10.1016/S0167-7322(01)00228-8
Bakare, 2005, C60 aggregate structure and geometry in non-polar o-xylene, J. Phys. Chem. B, 109, 87, 10.1021/jp047033b
Smorenburg, 1995, Structure and dynamics of C60 in liquid CS2 from neutron scattering, Phys. Rev. E, 52, 2742, 10.1103/PhysRevE.52.2742
Nath, 2002, Effect of solvent polarity on the aggregation of fullerenes: a comparison between C60 and C70, Chem. Phys. Lett., 360, 422, 10.1016/S0009-2614(02)00780-7
Argentine, 1994, Unusual photoluminescence behavior of C70, J. Phys. Chem., 98, 7350, 10.1021/j100081a019
Torok, 2002, Investigation of anomalous clustering of C60 in toluene by small-angle neutron scattering, Solid State Phys., 44, 546, 10.1134/1.1462711
Ginzburg, 2008, Variations in the structure of aromatic solvents under the influence of dissolved fullerene C70, Crystallogr. Rep., 53, 645, 10.1134/S1063774508040159
Ginzburg, 2008, Structuring of aromatic solvents in the presence of small amounts of fullerence C60, Russ. J. Appl. Chem., 81, 618, 10.1134/S1070427208040095
Rudalevige, 1998, Spectroscopic studies of fullerene aggregates, J. Phys. Chem. A, 102, 9797, 10.1021/jp9832591
Prylutskyy, 2001, Structure, vibrational, and calorical properties of fullerene C60 in toluene solution, Fuller. Sci. Technol., 9, 167, 10.1081/FST-100102964
Golubkov, 2001, A study of small-angle X-ray scattering from solutions of fullerence C60 in o-xylene, Russ. J. Phys. Chem., 75, 1667
Ying, 1994, Slow aggregation of buckminsterfullerene (C60) in benzene solution, Chem. Phys. Lett., 219, 214, 10.1016/0009-2614(94)87047-0
Avdeev, 2010, Models of cluster formation of fullerenes in solutions, J. Phys. Chem., 84, 1405
Tropin, 2006, behavior of concentration in the kinetics of dissolution of fullerenes, Lett. ZhETF, 83, 467
B.M. Smirnov, Physics of Fractal Clusters, (n.d.). 〈https://www.studmed.ru/smirnov-bm-fizika-fraktalnyh-klasterov_ab83d47e1af.html〉, (Accessed 13 May 2021).
Jullien, 1987, Aggregation phenomena and fractal aggregates, Conte Phys., 28, 477, 10.1080/00107518708213736
Vicsek, 1989, Fractal growth phenomena, Comput. Phys., 3, 108, 10.1063/1.4822864
Ghosh, 1996, Aggregation of Co in solvent mixtures, J. Phys. Chem., 100, 9439, 10.1021/jp9535046
Brant, 2005, Aggregation and deposition characteristics of fullerene nanoparticles in aqueous systems, J. Nanopart. Res., 545, 10.1007/s11051-005-4884-8
Mchedlov-Petrossyan, 2020, Fullerenes in aqueous media: a review, Theor. Exp. Chem., 55, 361, 10.1007/s11237-020-09630-w
Mikheev, 2021, Green and rapid preparation of long-term stable aqueous dispersions of fullerenes and endohedral fullerenes: the pros and cons of an ultrasonic probe, Ultrason Sonochem., 73, 10.1016/j.ultsonch.2021.105533
Deguchi, 2007, Stabilization of C60 nanoparticles by protein adsorption and its implications for toxicity studies, Chem. Res. Toxicol., 20, 854, 10.1021/tx6003198
Chen, 2007, Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions, J. Colloid Interface Sci., 309, 126, 10.1016/j.jcis.2007.01.074
Mchedlov-Petrossyan, 1997, Colloidal dispersions of fullerene C60 in water: some properties and regularities of coagulation by electrolytes, J. Chem. Soc. Faraday Trans., 93, 4343, 10.1039/a705494g
Shu, 2006, Aggregation studies of the water-soluble gadofullerene magnetic resonance imaging contrast agent: [Gd@C82O6(OH) 16(NHCH2CH2COOH)8]x, J. Phys. Chem. B, 110, 15597, 10.1021/jp0615609
Laus, 2005, Destroying gadofullerene aggregates by salt addition in aqueous solution of Gd@C60(OH)x and Gd@C60[C(COOH2)]10, J. Am. Chem. Soc., 127, 9368, 10.1021/ja052388+
Nikolaev, 2012, Ordering of hydroxylated fullerenes in aqueous solutions, 345
Lebedev, 2013, Structure and self-assembly of fullerene-containing molecular systems, JOAM
Balaji Sitharaman, Subashini Asokan, Irene Rusakova, Michael S. Wong, Lon J. Wilson, Nanoscale Aggregation Properties of Neuroprotective Carboxyfullerene (C3) in Aqueous Solution, 2004. 〈https://doi.org/10.1021/NL049315T〉.
Jeng, 1999, Study of aggregates of fullerene-based ionomers in aqueous solutions using small angle neutron and X-ray scattering, J. Phys. Chem. B, 103, 1059, 10.1021/jp9834659
Tsao, 2002, In vitro action of carboxyfullerene, J. Antimicrob. Chemother., 49, 641, 10.1093/jac/49.4.641
Scott, 2004, Polymer electrolyte membrane fuel cells: principles and advances, Rev. Environ. Sci. Biotechnol., 3, 273, 10.1007/s11157-004-6884-z
Sitharaman, 2007, Gadofullerenes as nanoscale magnetic labels for cellular MRI, Contrast Media Mol. Imaging, 2, 139, 10.1002/cmmi.140
Kirchin, 1998, (PDF) Gadobenate dimeglumine (Gd-BOPTA): an overview, Investig. Radiol., 33, 798, 10.1097/00004424-199811000-00003
Zhang, 2007, Preparation and characterization of two new water-soluble endohedral metallofullerenes as magnetic resonance imaging contrast agents, J. Phys. Chem. B, 111, 14223, 10.1021/jp075529y
M. Braddock (Ed.), Biomedical Imaging, Royal Society of Chemistry, Cambridge, 2011. 〈https://doi.org/10.1039/9781849732918〉.
Bolskar, 2003, First soluble M @ C60 derivatives provide enhanced access to metallofullerenes and permit in vivo evaluation of Gd @ C60[C(COOH)2]10 as a MRI contrast agent, J. Am. Chem. Soc., 125, 5471, 10.1021/ja0340984
Wike-Hooley, 1984, The relevance of tumour pH to the treatment of malignant disease, Radiother. Oncol., 2, 343, 10.1016/S0167-8140(84)80077-8
Zhou, 2010, Subcellular distribution of polyhydroxylated metallofullerene Gd@C82(OH)22 in different tissues of tumor-bearing mice, J. Nanosci. Nanotechnol., 10, 8597, 10.1166/jnn.2010.2486
Liu, 2018, Identification differential behavior of Gd@C82(OH)22 upon interaction with serum albumin using spectroscopic analysis, Spectrochim. Acta A Mol. Biomol. Spectrosc., 203, 383, 10.1016/j.saa.2018.05.125
Yin, 2009, The scavenging of reactive oxygen species and the potential for cell protection by functionalized fullerene materials, Biomaterials, 30, 611, 10.1016/j.biomaterials.2008.09.061
Liu, 2009, The effect of Gd@C82(OH)22 nanoparticles on the release of Th1/Th2 cytokines and induction of TNF-α mediated cellular immunity, Biomaterials, 30, 3934, 10.1016/j.biomaterials.2009.04.001
Liu, 2009, The effect of Gd@C82(OH)22 nanoparticles on the release of Th1/Th2 cytokines and induction of TNF-α mediated cellular immunity, Biomaterials, 30, 3934, 10.1016/j.biomaterials.2009.04.001
Meng, 2011, Epigenetic modulation of human breast cancer by metallofullerenol nanoparticles: in vivo treatment and in vitro analysis, Nanoscale, 3, 4713, 10.1039/c1nr10898k
Liang, 2010, Metallofullerene nanoparticles circumvent tumor resistance to cisplatin by reactivating endocytosis, Proc. Natl. Acad. Sci., 107, 7449, 10.1073/pnas.0909707107
Zhou, 2017, Amino acid functionalized gadofullerene nanoparticles with superior antitumor activity via destruction of tumor vasculature in vivo, Biomaterials, 133, 107, 10.1016/j.biomaterials.2017.04.025
Tóth, 2005, Water-soluble gadofullerenes: toward high-relaxivity, pH-responsive MRI contrast agents, J. Am. Chem. Soc., 127, 799, 10.1021/ja044688h
Sitharaman, 2004, Gd@C 60 [C(COOH) 2] 10 and Gd@C 60 (OH) x: nanoscale aggregation studies of two metallofullerene MRI contrast agents in aqueous solution, Nano Lett., 4, 2373, 10.1021/nl0485713
Meng, 2013, Biological characterizations of [Gd@C82(OH)22] n nanoparticles as fullerene derivatives for cancer therapy, Integr. Biol., 5, 43, 10.1039/c2ib20145c
Liu, 2009, The effect of Gd@C82(OH)22 nanoparticles on the release of Th1/Th2 cytokines and induction of TNF-α mediated cellular immunity, Biomaterials, 30, 3934, 10.1016/j.biomaterials.2009.04.001
Meng, 2010, Potent angiogenesis inhibition by the particulate form of fullerene derivatives, ACS Nano, 4, 2773, 10.1021/nn100448z
Chen, 2018, Charging nanoparticles: increased binding of Gd@C 82 (OH) 22 derivatives to human MMP-9, Nanoscale, 10, 5667, 10.1039/C8NR00127H
Meng, 2012, Gadolinium metallofullerenol nanoparticles inhibit cancer metastasis through matrix metalloproteinase inhibition: imprisoning instead of poisoning cancer cells, Nanomedicine, 8, 136, 10.1016/j.nano.2011.08.019
L.B. Piotrovsky, O.I. Kiselev, Fullerenes in Biology, Rostok, Saint Petersburg, 2006.
Xu, 2009, Pulmonary responses to polyhydroxylated fullerenols, C60(OH)x, J. Appl. Toxicol., 29, 578, 10.1002/jat.1442
Shinohara, 2000, Endohedral metallofullerenes, Rep. Prog. Phys., 63, 843, 10.1088/0034-4885/63/6/201
Zhen, 2012, Maximizing the relaxivity of Gd-complex by synergistic effect of HSA and carboxylfullerene, ACS Appl. Mater. Interfaces, 4, 3724, 10.1021/am300817z
Shultz, 2010, Encapsulation of a radiolabeled cluster inside a fullerene cage, 177LuxLu(3-x)N@C80: an interleukin-13-conjugated radiolabeled metallofullerene platform, J. Am. Chem. Soc., 132, 4980, 10.1021/ja9093617
Shultz, 2010, Encapsulation of a radiolabeled cluster inside a fullerene cage, 177 Lu x Lu (3− x) N@C 80: an interleukin-13-conjugated radiolabeled metallofullerene platform, J. Am. Chem. Soc., 132, 4980, 10.1021/ja9093617
Diener, 2007, 212 Pb@C 60 and its water-soluble derivatives: synthesis, stability, and suitability for radioimmunotherapy, J. Am. Chem. Soc., 129, 5131, 10.1021/ja068639b
Lin, 2018, Gd@C 82 (OH) 22 harnesses inflammatory regeneration for osteogenesis of mesenchymal stem cells through JNK/STAT3 signaling pathway, J. Mater. Chem. B, 6, 5802, 10.1039/C8TB01097H
Popov, 2013, Endohedral fullerenes, Chem. Rev., 113, 5989, 10.1021/cr300297r
Shinohara, 2000, Endohedral metallofullerenes, Rep. Prog. Phys., 63, 843, 10.1088/0034-4885/63/6/201