Endogenous fungal endophthalmitis: risk factors, clinical features, and treatment outcomes in mold and yeast infections

Jayanth Sridhar1, Harry W Flynn1, Ajay E Kuriyan1, Darlene Miller1, Thomas Albini1
1Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, USA

Tóm tắt

The purpose of the current study was to analyze risk factors, clinical features, and treatment outcomes in patients with endogenous fungal endophthalmitis with yeast and mold infections. For this retrospective consecutive case series, microbiologic and clinical records were reviewed to identify all patients with intraocular culture-proven endogenous fungal endophthalmitis treated at a single institution between January 1, 1990 and December 31, 2011. Sixty-seven eyes of 53 patients were identified; 51 eyes of 39 patients had positive cultures for yeast and 16 eyes of 14 patients had positive cultures for molds. Patients with molds as a causative organism had significantly shorter duration of symptoms prior to diagnosis (molds 3.8 days, yeast 21.0 days, p = 0.002), were more likely to be receiving iatrogenic immunosuppression (molds 57.1%, yeast 7.7%, p = 0.001), have a history of whole-organ transplantation (molds 35.7%, yeast 2.6%, p = 0.001), and were more likely to have hypopyon at the time of diagnosis (molds 37.5%, yeast 6.0%, p = 0.001). Patients with endogenous endophthalmitis caused by molds had significantly worse visual acuity at the time of diagnosis (logMAR visual acuity molds 1.80, yeast 1.15, p = 0.008) and at final visit (logMAR visual acuity molds 1.97, yeast 1.05, p = 0.005) compared to those patients with yeast as a causative organism. There was no significant difference in the rate of retinal detachment between the two groups (mold 12.5%, yeast 30.6%, p = 0.201). Patients with cultures positive for mold were significantly more likely to undergo enucleation (molds 25.0%, yeast 0%, p < 0.001). Systemic risk factors for patients with endogenous fungal endophthalmitis caused by molds were iatrogenic immunosuppression and a history of whole-organ transplantation. Shorter duration of symptoms before diagnosis and higher rates of hypopyon occurred in mold cases. While endogenous fungal endophthalmitis is generally associated with poor visual acuity outcomes, infection with mold species was associated with worse visual acuity on presentation and on final follow-up than infection with yeast species. Enucleation rates were much higher in mold cases.

Tài liệu tham khảo

Schiedler V, Scott IU, Flynn HW Jr, Davis JL, Benz MS, Miller D: Culture-proven endogenous endophthalmitis: clinical features and visual acuity outcomes. Am J Ophthalmol 2004,137(4):725–731. Chhablani J: Fungal endophthalmitis. Expert Rev Anti Infect Ther 2011,9(12):1191–1201. 10.1586/eri.11.139 Lingappan A, Wykoff CC, Albini TA, Miller D, Pathengay A, Davis JL, Flynn HW Jr: Endogenous fungal endophthalmitis: causative organisms, management strategies, and visual acuity outcomes. Am J Ophthalmol 2012,153(1):162–166.e1. 10.1016/j.ajo.2011.06.020 Kostick DA, Foster RE, Lowder CY, Meyers SM, McHenry MC: Endogenous endophthalmitis caused by Candida albicans in a healthy woman. Am J Ophthalmol 1992,113(5):593–595. Mamandhar A, Bajracharya L: Endogenous aspergillus endophthalmitis in a healthy individual. Nepal J Ophthalmol 2012,4(7):179–183. Essman TF, Flynn HW Jr, Smiddy WE, Brod RD, Murray TG, Davis JL, Rubsamen PE: Treatment outcomes in a 10-year study of endogenous fungal endophthalmitis. Ophthalmic Surg Lasers 1997,28(3):185–194. Riddell Iv J, McNeil SA, Johnson TM, Bradley SF, Kazanjian PH, Kauffman CA: Endogenous Aspergillus endophthalmitis: report of 3 cases and review of the literature. Medicine (Baltimore) 2002,81(4):311–320. 10.1097/00005792-200207000-00007 Binder MI, Chua J, Kaiser PK, Procop GW, Isada CM: Endogenous endophthalmitis: an 18-year review of culture-positive cases at a tertiary care center. Medicine (Baltimore) 2003,82(2):97–105. 10.1097/00005792-200303000-00004 Sutton DA, Fothergill AW, Rinaldi MG: Guide to clinically significant fungi. 1st edition. Baltimore: Williams & Wilkins; 1997:471. Larone DH: Medically important fungi: a guide to identification. 4th edition. Washington, D.C: ASM Press; 2002:409. Rebell GC, Forster RK In: Manual of clinical microbiology. In Fungi of keratomycosis. 3rd edition. Washington, D.C: American Society for Microbiology; 1980:553–561. Schulze-Bonsel K, Feltgen N, Burau H, Hansen L, Bach M: Visual acuities “hand motion” and “counting fingers” can be quantified with the Freiburg visual acuity test. Invest Ophthalmol Vis Sci 2006, 47: 1236–1240. 10.1167/iovs.05-0981 Bach M, Schulze-Bonsel K, Feltgen N, Burau H, Hansen L: Author response: numerical imputation for low vision states [electronic letter]. Invest Ophthalmol Vis Sci 2007. Shrader SK, Band JD, Lauter CB, Murphy P: The clinical spectrum of endophthalmitis: incidence, predisposing factors, and features influencing outcome. J Infect Dis 1990,162(1):115–120. 10.1093/infdis/162.1.115 Connell PP, O’Neill EC, Amirul Islam FM, Buttery R, McCombe M, Essex RH, Roufail E, Lash S, Wolffe B, Clark B, Chiu D, Campbell W, Allen P: Endogenous endophthalmitis associated with intravenous drug abuse: seven-year experience at a tertiary referral center. Retina 2010,30(10):1721–1725. 10.1097/IAE.0b013e3181dd6db6 Rao NA, Hidayat AA: Endogenous mycotic endophthalmitis: variations in clinical and histopathologic changes in candidiasis compared with aspergillosis. Am J Ophthalmol 2001,132(2):244–251. 10.1016/S0002-9394(01)00968-0 Anand AR, Therese KL, Madhavan HN: Spectrum of aetiological agents of postoperative endophthalmitis and antibiotic susceptibility of bacterial isolates. Indian J Ophthalmol 2000, 48: 123. Oude Lashof AM, Rothova A, Sobel JD, Ruhnke M, Pappas PG, Viscoli C, Schlamm HT, Oborska IT, Rex JH, Kullberg BJ: Ocular manifestations of candidemia. Clin Infect Dis 2011,53(3):262–268. 10.1093/cid/cir355 Shen X, Xu G: Vitrectomy for endogenous fungal endophthalmitis. Ocul Immunol Inflamm 2009,17(3):148–152. 10.1080/09273940802689396 Foster RE, Rubsamen PE, Joondeph BC, Flynn HW Jr, Smiddy WS: Concurrent endophthalmitis and retinal detachment. Ophthalmology 1994,101(3):490–498. Doft BM, Kelsey SF, Wisniewski SR: Retinal detachment in the endophthalmitis vitrectomy study. Arch Ophthalmol 2000,118(12):1661–1665. 10.1001/archopht.118.12.1661 Flynn HW Jr, Scott IU: Legacy of the endophthalmitis vitrectomy study. Arch Ophthalmol 2008,126(4):559–561. 10.1001/archopht.126.4.559 Sallam A, Taylor SR, Khan A, McCluskey P, Lynn WA, Manku K, Pacheco PA, Lightman S: Factors determining visual outcome in endogenous candida endophthalmitis. Retina 2012,32(6):1129–1134. 10.1097/IAE.0b013e31822d3a34 Zhang YQ, Wang WJ: Treatment outcomes after pars plana vitrectomy for endogenous endophthalmitis. Retina 2005,25(6):746–750. 10.1097/00006982-200509000-00010 Lamaris GA, Esmaeli B, Chamilos G, et al.: Fungal endophthalmitis in a tertiary care cancer center: a review of 23 cases. Eur J Clin Microbiol Infect Dis 2008,27(5):343–347. 10.1007/s10096-007-0443-9 Anand A, Madhavan H, Neelam V, Lily T: Use of polymerase chain reaction in the diagnosis of fungal endophthalmitis. Ophthalmology 2001,108(2):326–330. 10.1016/S0161-6420(00)00517-0 Coats ML, Peyman GA: Intravitreal corticosteroids in the treatment of exogenous fungal endophthalmitis. Retina 1992,12(1):46–51. 10.1097/00006982-199212010-00010 Majji AB, Jalali S, Das T, Gopinathan U: Role of intravitreal dexamethasone in exogenous fungal endophthalmitis. Eye (Lond) 1999,13(Pt 5):660–665.