Endogenous estrogens—breast cancer and chemoprevention

Pharmacological Reports - Tập 73 - Trang 1497-1512 - 2021
Beata Starek-Świechowicz1, Bogusława Budziszewska1,2, Andrzej Starek1
1Department of Biochemical Toxicology, Chair of Toxicology, Medical College, Jagiellonian University, Kraków, Poland
2Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland

Tóm tắt

Breast cancer is the most common female malignancy and the second leading cause of cancer related deaths. It is estimated that about 40% of all cancer in women is hormonally mediated. Both estrogens and androgens play critical roles in the initiation and development of breast cancer. Estrogens influence normal physiological growth, proliferation, and differentiation of breast tissues, as well as the development and progression of breast malignancy. Breast cancer is caused by numerous endo- and exogenous risk factors. The paper presents estrogen metabolism, in particular 17β-estradiol and related hormones. The mechanisms of estrogen carcinogenesis include the participation of estrogen receptors, the genotoxic effect of the estrogen metabolites, and epigenetic processes that are also presented. The role of reactive oxygen species in breast cancer has been described. It called attention to a role of numerous signaling pathways in neoplastic transformation. Chemoprotective agents, besides other phytoestrogens, classical antioxidants, synthetic compounds, and their mechanisms of action have been shown.

Tài liệu tham khảo

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataran I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;10:10. https://doi.org/10.3322/caac.21660. Didkowska J, Wojciechowska U. Breast cancer in Poland and Europe—population and statistics. Nowotwory J Oncol. 2013;63(2):111–8. Collaborative Group on Hormonal Factors in Breast Cancer. Menarche, menopause, and breast cancer risk: individual participant meta-analysis, including 118 964 women with breast cancer from 117 epidemiological studies. The Lancet Oncol. 2012;13(11):1141–51. https://doi.org/10.1016/S1470-2045(12)70425-4. Hulka BS, Moorman PG. Breast cancer: hormones and other risk factors. Maturitas. 2008;61(1–2):203–13. https://doi.org/10.1016/j.maturitas.2008.11.016. Castro GD, Castro JA. Alcohol drinking and mammary cancer: Pathogenesis and potential dietary preventive alternatives. World J Clin Oncol. 2014;5(4):713–29. https://doi.org/10.5306/wjco.v5.i4.713. Chlebowski R, Rohan T, Manson J, Aragaki A, Kaunitz A, Stefanick M, et al. Breast cancer after use of estrogen plus progestin and estrogen alone. JAMA Oncol. 2015;1(3):296–305. https://doi.org/10.1001/jamaoncol.2015.0494. Fortner RT, Katzke V, Kuhn T, Kaaks R. Obesity and breast cancer. Recent Results Cancer Res. 2016;208:43–65. https://doi.org/10.1007/978-3-319-42542-9_3. Lynch BM, Neilson HK, Friedeureich CM. Physical activity and breast cancer prevention. Recent Results Cancer Res. 2011;186:13–42. https://doi.org/10.1007/978-3-642-04231-7_2. Schmidt S, Monk J, Robinson L, Mourtzakis M. The integrative role of leptin, estrogen and the insulin family in obesity-associated breast cancer: potential effects of exercise. Obes Rev. 2015;16(6):473–87. https://doi.org/10.1111/obr.12281. Willet WC. Diet, nutrition, and avoidable cancer. Environ Health Persp. 1995;103(Suppl. 8):165–70. https://doi.org/10.1289/ehp.95103s8165. Dorgan JF, Reichman ME, Judd JT, Brown C, Longcope C, Schatzkin A. Relation of energy, fat, and fiber intakes to plasma concentrations of estrogens and androgens in premenopausal women. Am J Clin Nutr. 1996;64(1):25–33. https://doi.org/10.1093/ajcn/64.1.25. Yue W, Yager JD, Wang JP, Jupe ER, Santen RJ. Estrogen receptor-dependent and independent mechanisms of breast cancer carcinogenesis. Steroids. 2013;78:161–70. https://doi.org/10.1016/j.steroids.2012.11.001. Shanle EK, Xu W. Selectively targeting estrogen receptors for cancer treatment. Drug Deliv Rev. 2010;62:1265–76. https://doi.org/10.1016/j.addr.2010.08.001. Hervouet E, Cartron PF, Jouvenot M, Delage-Mourroux R. Epigenetic regulation of estrogen signaling in breast cancer. Epigenetics. 2013;8:237–45. https://doi.org/10.4161/epi.23790. Bernstein L, Ross RK, Pike MC, Brown JB, Henderson BE. Hormone levels in older women: a study of post-menopausal breast cancer patients and healthy population controls. Br J Cancer. 1990;61:298–302. https://doi.org/10.1038/bjc.1990.56. Lipworth L, Adami HO, Trichopoulos D, Carlstrom K, Mantzoros C. Serum steroid hormone levels, sex hormone-binding, and body mass index in the etiology of post-menopausal breast cancer. Epidemiology. 1996;7(1):96–100. Toniolo PG, Levitz M, Zeleniuch-Jacquotte A, Banerjee S, Koenig KL, Shore RE. A prospective study of endogenous estrogens and breast cancer risk. J Natl Cancer Inst. 1995;87(3):190–7. https://doi.org/10.1093/jnci/87.3.190. Berrino F, Muti P, Micheli A. Serum sex hormone levels after menopause and subsequent breast cancer. J Natl Cancer Inst. 1996;88(5):291–6. https://doi.org/10.1093/jnci/88.5.291. Zhu BT, Conney AH. Functional role of estrogen metabolism in target cells: review and perspectives. Carcinogenesis. 1998;19:1–27. https://doi.org/10.1093/carcin/19.1.1. Cauley JA, Lucas FL, Kuller LH, Stone K, Browner W, Cummings SR. Elevated serum estradiol and testosterone concentrations are associated with a high risk for breast cancer. Ann Intern Med. 1999;130(4 Pt 1):270–7. https://doi.org/10.7326/0003-4819-130-4part1-199902160-00004. Fuhrman BJ, Schairer C, Gail MH, Boyd-Morin J, Xu X, Sue LY, et al. Estrogen metabolism and risk of breast cancer in postmenopausal women. J Natl Cancer Inst. 2012;104(4):326–39. https://doi.org/10.1093/jnci/djr531. Ziegler RG, Fuhrman BJ, Moore SC, Mattews CE. Epidemiologic studies of estrogen metabolism and breast cancer. Steroids. 2015;99(Pt A):67–75. https://doi.org/10.1016/j.steroids.2015.02.015. Thomas HV, Key TJ, Allen DS, Moore JW, Dowsett M, Fentiman IS, et al. A prospective study of endogenous serum hormone concentrations and breast cancer risk in premenopausal women on the island of Guernsey. Br J Cancer. 1997;75:1075–9. https://doi.org/10.1038/bjc.1997.183. Eliassen AH, Spiegelman D, Xu X, Keefer LK, Veenstra TD, Barbieri RL, et al. Urinary estrogens and estrogen metabolites and subsequent risk of breast cancer among premenopausal women. Cancer Res. 2012;72(3):696–706. https://doi.org/10.1158/00085472.CAN-11-2507. Carr BR, MacDonald PC, Simpson ER. The role of lipoproteins in the regulation of progesterone secretion by the human corpus luteum. Fertil Steril. 1982;38(3):303–11. https://doi.org/10.1016/S0015-0282/16/46511-8. Samavat H, Kurzer MS. Estrogen metabolism and breast cancer. Cancer Lett. 2015;356(2PtA):231–43. https://doi.org/10.1016/j.canlet.2014.04.018. Kristensen VN, Andersen TI, Lindblom A, Erikstein B, Magnus P, Borresen-Dale AL. A rare CYP19 (aromatase) variant may increase the risk of breast cancer. Pharmacogenetics. 1998;8:43–8. Williams JA, Phillips DH. Mammary expression of xenobiotic metabolizing enzymes and their potential role in breast cancer. Cancer Res. 2000;60:4667–77. Dawling S, Hachey DL, Roodi N, Parl FF. In vitro model of mammary estrogen metabolism: structural and kinetic differences between catechol estrogens 2- and 4- hydroxyestradiol. Chem Res Toxicol. 2004;17(9):1258–64. https://doi.org/10.1021/tx0498657. Raftogianis R, Creveling C, Weinshilboum R, Weisz J. Estrogen metabolism by conjugation. J Natl Cancer Inst Monogr. 2000;27:113–24. https://doi.org/10.1093/oxfordjournals.jmcimonographs.a024234. Li KM, Todorovic R, Devanesan P, Higginbotham S, Köfeler H, Ramanathan R, et al. Metabolism and DNA binding studies of 4-hydroxyestradiol and estradiol-3,4-uinone in vitro and in female ACI rat mammary gland in vivo. Carcinogenesis. 2004;25(2):289–97. https://doi.org/10.1093/carcin/bgg191. Zhao Z, Kosinska W, Khmielnitsky M, Cavalieri EL, Rogan EG, Chakravarti D, et al. Mutagenic activity of 4-hydroxyestradiol, but not 2-hydroxyestradiol, in BB rat 2 embrionic cells, and the mutational spectrum of 4-hydroxyestradiol. Chem Res Toxicol. 2006;19(3):475–9. https://doi.org/10.1021/tx0502645. Mailander PC, Meza JL, Higginbotham S, Chakravarti D. Induction A.T to G.C mutations by erroneous repair of depurinated DNA following estrogen treatment of the mammary gland of ACI rats. J Steroid Biochem Mol Biol. 2006;101(4–5):204–15. https://doi.org/10.1016/j.jsbmb.2006.06.019. Cavalieri EL, Rogan EG. Unbalanced metabolism of endogenous estrogens in the etiology and prevention of human cancer. J Steroid Biochem Mol Biol. 2011;125(3–5):169–80. https://doi.org/10.1016/j.jsbmb.2011.03.008. Van Aswegen CH, Purdy RH, Wittliff JL. Binding of 2-hydroxyestradiol and 4-hydroxyestradiol to estrogen receptors from human breast cancer. J Steroid Biochem. 1989;32(4):485–92. https://doi.org/10.1016/0022-4731(89)90380-4. Gupta M, McDougal A, Safe S. Estrogenic and antiestrogenic activities of 16 alpha- and 2-hydroxy metabolites of 17 beta-estradiol in MCF-7 and T47D human breast cancer cells. J Steroid Biochem Mol Biol. 1998;67(5–6):413–9. https://doi.org/10.1016/s0960-07609(98)00135-6. Vandewalle B, Lefebvre J. Opposite effects of estrogen and catecholestrogen on hormone-sensitive breast cancer cell growth and differentiation. Mol Cell Endocrinol. 1989;61(2):239–46. https://doi.org/10.1016/0303-7207(89)90135-4. Lavigne JA, Goodman JE, Fonong T, Odwin S, He P, Roberts DW, et al. The effects of catechol-O-methyltransferase inhibition on estrogen metabolite and oxidative DNA damage levels in estradiol-treated MCF-7 cells. Cancer Res. 2001;61(20):7488–94. Dawling S, Roddi N, Parl FF. Methoxyestrogen exert feedback inhibition on cytochrome P450 1A1 and 1B1. Cancer Res. 2003;63(12):3127–32. Lakhani NJ, Sarkar MA, Venitz J, Figg WD. 2-Methoxyestradiol, a promising anticancer agent. Pharmacotherapy. 2003;23(2):165–72. https://doi.org/10.1592/phco.23.2.165.2088. LaValee TM, Zhang XH, Herbstritt CJ, Kough EC, Green SJ, Pribluda VS. 2-Methoxy- estradiol inhibits proliferation and induces apoptosis independently of estrogen receptors α and β. Cancer Res. 2002;62:3691–7. Lottering ML, Haag M, Seegers JC. Effects of 17beta-estradiol metabolites on cell cycle events in MCF-7 cells. Cancer Res. 1992;52(21):5926–32. Li DN, Seidel A, Pritchard MP, Wolf CR, Friedberg T. Polymorphism P450 CYP1B1 affects the conversion of estradiol to the potentially carcinogenic metabolite 4-hydroxyestradiol. Pharmacogenetics. 2000;10:343–53. Kocabas NA, Sardas S, Cholerton S, Daly AK, Karakaya AE. Cytochrome P450 CYP 1B1and catechol O-methyltransferase (COMT) genetic polymorphism and breast cancer susceptibility in a Turkish population. Arch Toxicol. 2002;76:643–9. https://doi.org/10.1007/s00204-002-0387-x. Shou M, Korzekwa KR, Brooks EN, Krausz KW, Gonzales FJ, Gelboin HV. Role of human hepatic cytochrome P450 1A2 and 3A4 in the metabolic activation of estrone. Carcinogenesis. 1997;18(1):207–14. https://doi.org/10.1093/carcin/18.1.207. Huang Z, Fasco MJ, Figge HL, Keyomarsi K, Kaminsky LS. Expression of cytochromes P450 in human breast tissue and tumors. Drug Metab Dispos. 1996;24(8):899–905. Thompson PA, Shields PG, Freudenheim JL, Stone A, Vena JE, Marshall JR, et al. Genetic polymorphism in catechol-O-methyltransferase, menopausal status, and breast cancer risk. Cancer Res. 1998;58:2107–10. Huang CS, Chern HD, Chang KJ, Cheng CW, Hsu SM, Shen CY. Breast cancer risk associated with genotype polymorphism of the estrogen-metabolising genes CYP17, CYP1A1, and COMT: a multigenetic study on cancer susceptibility. Cancer Res. 1999;59:4870–5. Hofseth LJ, Raafat AM, Osuch JR, Pathak DR, Slomski CA, Haslam SZ. Hormone replacement therapy with estrogen or estrogen plus medroxyprogesterone acetate is associated with increased epithelial proliferation in the normal postmenopausal breast. J Clin Endocrinol Metab. 1999;84:4559–65. https://doi.org/10.1210/jcem.84.12.6194. Park SA, Na HK, Kim EH, Cha YN, Surh YJ. 4-Hydroxyestradiol induces anchorage-independent growth of human mammary epithelial cells via activation of Ikappa B kinase: potential role of reactive oxygen species. Cancer Res. 2009;69:2416–24. https://doi.org/10.1158/0008-5472.CAN-08-2177. Santen R, Cavalieri E, Rogan E, Russo J, Guttenplan J, Ingle J, et al. Estrogen mediation of breast tumor formation involves estrogen receptor—dependent, as well as independent, genotoxic effects. Ann N Y Acad Sci. 2009;1155:132–40. https://doi.org/10.1111/j.1749-6632.2008.03685.x. Santen RJ, Yue W, Wang JP. Estrogen metabolites and breast cancer. Steroids. 2015;99(Pt A):61–6. https://doi.org/10.1016/j.steroids.2014.08.003. Lareef MH, Garber J, Russo PA, Russo IH, Heulings R, Russo J. The estrogen antagonist ICI-182-780 does not inhibit the transformation phenotypes induced by 17-beta-estradiol and 4-OH estradiol in human breast epithelial cells. Int J Oncol. 2005;26(2):423–9. https://doi.org/10.3892/ijo.26.2.423. Zahid M, Kohli E, Saeed M, Rogan E, Cavalieri E. The greater reactivity of estradiol 3,4-quinone vs estradiol-2,3-quinone with DNA in the formation of depurinating adducts: implication for tumor-initiating activity. Chem Res Toxicol. 2006;19(1):164–72. https://doi.org/10.1021/tx050229y. Fussell KC, Udasin RG, Smith PJS, Gallo MA, Laskin JD. Catechol metabolites of endogenous estrogens induce redox cycling and generate reactive oxygen species in breast epithelial cells. Carcinogenesis. 2011;32(8):1285–93. https://doi.org/10.1093/carcin/bgr109. Chen ZH, Na HK, Hurh YJ, Surh YJ. 4-Hydroxyestradiol induces oxidative stress and apoptosis in human mammary epithelial cells: possible protection by NF-kappa B and ERK/MAPK. Toxicol Appl Pharmacol. 2005;208(1):46–56. https://doi.org/10.1016/j.Taap.2005.01.010. Okoh VO, Felty Q, Parkash J, Poppiti R, Roy D. Reactive oxygen species via redox signaling to PI3K/AKT pathway contribute to the malignant growth of 4-hydroxyes-tradiol-transformed mammary epithelial cells. PLoS ONE. 2013;8(2):e54206. https://doi.org/10.1371/journal.pone.0054206. Chang M. Dual role of estrogen metabolism in mammary carcinogenesis. BMB Rep. 2011;44:423–34. https://doi.org/10.5483/BMBRep.2011.44.7.423. Seeger H, Wallwiener D, Kraemer E, Mueck AO. Comparison of possible carcinogenic estradiol metabolites: effects on proliferation, apoptosis and metastasis of human breast cancer cells. Maturitas. 2006;54(1):72–7. https://doi.org/10.1016/j.maturitas.2005.08.010. Gao N, Nester RA, Sarkar MA. 4-Hydroxy estradiol but not 2-hydroxy estradiol induces expression of hypoxia-inducible OVCAR-3 and A2780-CP70 human ovarian carcinoma cells. Toxicol Appl Pharmacol. 2004;196(1):124–35. https://doi.org/10.1016/j.Taap.2003.12.002. Kwon YJ, Back HS, Ye DJ, Shin S, Kim D, Chun YJ. CYP1B1 enhances cell proliferation and metastasis through induction of EMT and activation of Wnt/β-catenin signaling via Sp1 upregulation. PLoS ONE. 2016;11(3): e0151598. https://doi.org/10.1371/journal.pone.0151598. Kwon YJ, Cho NH, Ye DJ, Back HS, Ryu YS, Chun YJ. Cytochrome P4501B1 promotes cell survival via specificity protein 1 (Sp1)-mediated suppression of death receptor 4. J Toxicol Environ Health A. 2018;81(9):278–87. https://doi.org/10.1080/15287394.2018.1440186. Paquette B, Bisson M, Baptiste C, Therriault H, Lemay R, Cantin AM. Invasiveness of breast cancer cells MDA-MB-231 through extracellular matrix is increased by the estradiol metabolite 4-hydroxyestradiol. Int J Cancer. 2005;113(5):706–11. https://doi.org/10.1002/ijc.20647. Ames BN. Micronutrients prevent cancer and delay aging. Toxicol Lett. 1998;102–103:5–18. Yue W, Wang JP, Li Y, Bocchinfuso WP, Korach KS, Devanesan PD, et al. Tamoxifen versus aromatase inhibitors for breast cancer prevention. Clin Cancer Res. 2005;11(2 Pt 2):925–30. Renoir JM, Marsand V, Lazennec G. Estrogen receptor signaling as a target for novel breast cancer therapeutics. Biochem Pharmacol. 2013;85(4):449–65. https://doi.org/10.1016/j.bcp.2012.10.018. Mense SM, Hei TK, Ganju RK, Bhat HK. Phytoestrogens and breast cancer prevention: possible mechanisms of action. Environ Health Perspect. 2008;116(4):426–33. https://doi.org/10.1289/ehp.10.538. Bilal I, Chowdhury A, Davidson J, Whitehead S. Phytoestrogens and prevention of breast cancer: the contentious debate. World J Clin Oncol. 2014;5(4):705–12. https://doi.org/10.5306/wjco.v5.i4.705. Basu P, Maier C. Phytoestrogens and breast cancer: In vitro anticancer activities of isoflavones, lignans, coumestans, stilbens and their analogs and derivatives. Biomed Pharmacother. 2018;107:1648–66. https://doi.org/10.1016/j.biopha.2018.08.100. Orlando L, Schiavone P, Cinieri S. Genistein: the future of prevention and treatment of breast cancer? Cancer Biol Ther. 2011;11(10):918–20. https://doi.org/10.4161/cbt.11.10.15493. Li YW, Zhu GY, Shen XL, Chu JH, Yu ZL, Fong WF. Furanodienone inhibits cell proliferation and survival by suppressing ERα signaling in human breast cancer MCF-7 cells. J Cell Biochem. 2011;112:217–24. https://doi.org/10.1002/jeb.22922. Cui X, Schiff R, Arpino G, Osborne CK, Lee AV. Biology of progesterone receptor loss breast cancer and its implications for endocrine therapy. J Clin Oncol. 2005;23(30):7721–35. https://doi.org/10.1200/JCO.2005.09.004. Xie M, Zhou L, Chen X, Gainey LO, Xiao J, Nanes MS, et al. Progesterone and Src family inhibitor PP1 synergistically inhibit cell migration and invasion of human basal phenotype breast cancer cells. Biomed Res Int. 2015;2015: 426429. https://doi.org/10.1155/2015/426429. Lee SY, Oh SM, Lee SK, Chung KH. Antiestrogenic effects of marijuana smoke condensate and cannabinoid compounds. Arch Pharmacol Res. 2005;28:1365–75. https://doi.org/10.1007/BF02977903. Pons DG, Nadal-Serrano M, Blanquer-Rossello MM, Sastre-Serra J, Oliver J, Roca P. Genistein modulates proliferation and mitochondrial functionality in breast cancer cells depending on ERalpha/ERbeta ratio. J Cell Biochem. 2014;115:949–58. https://doi.org/10.1002/jcb.24737. Pons DG, Nadal-Serrano M, Torrens-Mas M, Oliver J, Roca P. The phytoestrogen genistein affects breast cancer cells treatment depending on the ERα/ERβ ratio. J Cell Biochem. 2016;117:218–29. https://doi.org/10.1002/jcb.25268. Magee PJ, McGlynn H, Rowland IR. Differential effects of isoflavones and lignans on invasiveness of MDA-MB-231 breast cancer cells in vitro. Cancer Lett. 2004;208(1):35–41. https://doi.org/10.1016/j.canlet.2003.11.12. Ziaei S, Halaby R. Dietary isoflavones and breast cancer risk. Medicines (Basel). 2017;4(2):18–29. https://doi.org/10.3390/medicines4020018. Tian J, Duan YX, Bei CY, Chen J. Calycosin induces apoptosis by upregulation of RASD1 in human breast cancer cells MCF-7. Horm Metab Res. 2013;45(08):593–8. https://doi.org/10.1055/s-0033-1341510. Chen J, Zhao X, Ye Y, Wang Y, Tian J. Estrogen receptor beta-mediated proliferative inhibition and apoptosis in human breast cancer by calycosin and formononetin. Cell Physiol Biochem. 2013;32:1790–7. https://doi.org/10.1159/000356612. Chen J, Hou R, Zhang X, Ye Y, Wang Y, Tian J. Calycosin suppresses breast cancer growth via ERβ-dependent regulation of IGF-1R, p38 MAPK and Pl3K/Akt pathways. PLoS ONE. 2014;9(3): e91245. https://doi.org/10.1371/journal.pone.0091245. Li S, Wang Y, Feng C, Wu G, Ye Y, Tian J. Calycosin inhibits the migration and invasion of human breast cancer cells by down-regulation of Foxp3 expression. Cell Physiol Biochem. 2017;44:1775–84. https://doi.org/10.1159/000485784. Huang CJ, Lin C, Yong W, Ye Y, Huang Z. Calycosin and genistein induce apoptosis by inactivation of HOTAIR/p-Akt signaling pathway in human breast cancer MCF-7 cells. Cell Physiol Biochem. 2015;35:722–8. https://doi.org/10.1159/000369732. Chen J, Zeng J, Xin M, Huang W, Chen X. Formononetin induces cell arrest of human breast cancer cells via IGF1/PI3K/Akt pathways in vitro and in vivo. Horm Metab Res. 2011;43:681–6. https://doi.org/10.1055/s-0031-1286306. Chen J, Sun L. Formononetin—induced apoptosis by activation of Ras/p38 mitogen—activated protein kinase in estrogen receptor-positive human breast cancer cells. Horm Metab Res. 2012;44:943–8. https://doi.org/10.1055/s-0032/1321818. Ling Y, Chen Y, Chen P, Hui H, Song X, Lu Z, et al. Baicalein potentially suppresses angiogenesis induced by vascular endothelial growth factor through the p53/Rb signaling pathway leading to G1/S cell cycle arrest. Exp Biol Med (Maywood). 2011;236(7):851–8. https://doi.org/10.1258/ebm.2011.010395. Ma X, Yan W, Dai Z, Gao X, Ma Y, Xu Q, et al. Baicalein supresses metastasis of breast cancer cells by inhibiting EMT via downregulation of SATB1 and Wnt/β-catenin pathway. Drug Des Devel Ther. 2016;10:1419–41. https://doi.org/10.2147/DDDT.S102541. Brennan KR, Brown AMC. Wnt proteins in mammary development and cancer. J Mamm Gland Biol Neoplasia. 2004;9(2):119–31. https://doi.org/10.1023/B:JOMG.0000037157. Christofori G. New signals from the invasive front. Nature. 2006;441(7092):444–50. https://doi.org/10.1038/nature04872. Park SH, Ham S, Kwon TH, Kim MS, Lee DH, Kang JW, et al. Luteolin induces cell cycle arrest and apoptosis through extrinsic and intrinsic signaling pathways in MCF-7 brist cancer cells. J Environ Pathol Toxicol Oncol. 2014;33(3):219–31. https://doi.org/10.1615/JEnvironPatholToxicolOncol.2014010923. Wang Y, Wang J, Gong X, Wen X, Gu X. Luteolin: anti-breast cancer effects and mechanisms. J Expl Res Pharmacol. 2018;3(3):85–90. https://doi.org/10.14218/JERP2018.00011. Kucinska M, Giron MD, Piotrowska H, Lisiak N, Granik WH, Lopez-Jaramillo FJ, et al. Novel promising estrogenic receptor modulators: cytotoxic and estrogenic activity of benzanilides and dithiobenzalinides. PLoS ONE. 2016;11:1–16. https://doi.org/10.1371/journal.pone.0145615. Aggarwal BB, Bhardwaj A, Aggarwal RS, Seeram NP, Shishodia S, Takada Y. Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer Res. 2004;24:2783–840. Perdew GH, Hollingshead BD, Di Natale BC, Morales JL, Labrecque MP, Takhar MK, et al. Estrogen receptor expression is required for low-dose resveratrol-mediated repression of aryl hydrocarbon receptor activity. J Pharmacol Exp Ther. 2010;335:273–83. https://doi.org/10.1124/jpet.110.170654. Park SA, Na HK, Surh YJ. Resveratrol suppresses 4-hydroxyestradiol-induced transformation of human breast epithelial cells by blocking IκB kinase β-NF-κB signalling. Free Radic Res. 2012;46(8):1051–7. https://doi.org/10.3109/10715762.2012.671940. Murias M, Miksits M, Aust S, Spatzenegger M, Thalhammer T, Szekeres T, et al. Metabolism of resveratrol in breast cancer cell lines: Impact of sulfotransferase 1A1 expression on cell growth inhibition. Cancer Lett. 2008;261:172–82. https://doi.org/10.1016/j.canlet.2007.11.008. Murias M, Luczak MW, Niepsuj A, Krajka-Kuzniak V, Zielinska-Przyjemska M, Jagodzinski PP, et al. Cytotoxic activity of 3,3’,4,4’,5,5’-hexahydroxystilbene against Breast cancer cells is mediated by induction of p53 and downregulation of mitochondrial superoxide dysmutase. Toxicol Vitro. 2008;22:13611370. https://doi.org/10.1016/j.tiv.2008.03.002. Kucinska M, Piotrowska H, Luczak MW, Mikula-Pietrasik J, Ksiazek K, Wozniak M, et al. Effects of hydroxylated resveratrol analogs on oxidative stress and cancer cells death in human acute T cell leukemia cell line. Prooxidative potential of hydroxylated resveratrol analogs. Chem Biol Interact. 2014;209:96–110. https://doi.org/10.1016/j.cbi.2013.12.009. Murias M, Jager W, Handler N, Erker T, Horvath Z, Szekeres T, et al. Antioxidant, prooxidant and cytotoxic activity of hydroxylated resveratrol analogues: structure-activity relationship. Biochem Pharmacol. 2005;69:903–12. https://doi.org/10.1016/j.bcp.2004.12.001. Piotrowska H, Kucinska M, Murias M. Biological activity of piceatannol: leaving the shadow of resveratrol. Mutat Res. 2012;750:60–82. https://doi.org/10.1016/j.mrrev.2011.11.001. Takemura H, Uchiyama H, Ohura T, Sakakibara H, Kuruko R, Amagai T, et al. A methoxyflavonoid, chrysoeriol, selectively inhibits the formation of a carcinogenic estrogen metabolite in MCF-7 breast cancer cells. J Steroid Biochem Mol Biol. 2010;118(1–2):70–6. https://doi.org/10.1016/j.jsbmb.2009.10.002. Lu F, Zahid M, Wang C, Saeed M, Cavalieri EL, Rogan EG. Resveratrol prevents estrogen-DNA adduct formation and neoplastic transformation in MCF-10F cells. Cancer Prev Res. 2008;1(2):135–45. https://doi.org/10.1158/1940.6207.CAPR-08-0037. Zahid M, Gaikwad NW, Rogan EG, Cavalieri EL. Inhibition of depurinating estrogen-DNA adduct formation by natural compounds. Chem Res Toxicol. 2007;20(12):1947–53. https://doi.org/10.1021/tx700269s.