Endogenous cytosolic Ca2+ buffering is necessary for TRPM4 activity in cerebral artery smooth muscle cells
Tài liệu tham khảo
Earley, 2004, Critical role for transient receptor potential channel TRPM4 in myogenic constriction of cerebral arteries, Circ. Res., 95, 922, 10.1161/01.RES.0000147311.54833.03
Gonzales, 2010, Pharmacological inhibition of TRPM4 hyperpolarizes vascular smooth muscle, Am. J. Physiol. Cell Physiol., 299, C1195, 10.1152/ajpcell.00269.2010
Nilius, 2003, Voltage dependence of the Ca2+-activated cation channel TRPM4, J. Biol. Chem., 278, 30813, 10.1074/jbc.M305127200
Earley, 2007, Protein kinase C regulates vascular myogenic tone through activation of TRPM4, Am. J. Physiol. Heart Circ. Physiol., 292, H2613, 10.1152/ajpheart.01286.2006
Demion, 2007, TRPM4, a Ca2+-activated nonselective cation channel in mouse sino-atrial node cells, Cardiovasc. Res., 73, 531, 10.1016/j.cardiores.2006.11.023
Nilius, 2006, The Ca2+-activated cation channel TRPM4 is regulated by phosphatidylinositol 4,5-biphosphate, EMBO J., 25, 467, 10.1038/sj.emboj.7600963
Launay, 2004, TRPM4 regulates calcium oscillations after T cell activation, Science, 306, 1374, 10.1126/science.1098845
Nilius, 2005, Regulation of the Ca2+ sensitivity of the nonselective cation channel TRPM4, J. Biol. Chem., 280, 6423, 10.1074/jbc.M411089200
Zhang, 2005, Phosphatidylinositol 4,5-bisphosphate rescues TRPM4 channels from desensitization, J. Biol. Chem., 280, 39185, 10.1074/jbc.M506965200
Rebecchi, 2000, Structure, function, and control of phosphoinositide-specific phospholipase C, Physiol. Rev., 80, 1291, 10.1152/physrev.2000.80.4.1291
Gonzales, 2010, Ca2+ release from the sarcoplasmic reticulum is required for sustained TRPM4 activity in cerebral artery smooth muscle cells, Am. J. Physiol. Cell Physiol., 299, C279, 10.1152/ajpcell.00550.2009
Navedo, 2005, Constitutively active L-type Ca2+ channels, Proc. Natl. Acad. Sci. U.S.A., 102, 11112, 10.1073/pnas.0500360102
Santana, 2009, Molecular and biophysical mechanisms of Ca2+ sparklets in smooth muscle, J. Mol. Cell. Cardiol., 47, 436, 10.1016/j.yjmcc.2009.07.008
Boittin, 2000, Ca(2+) signals mediated by Ins(1,4,5)P(3)-gated channels in rat ureteric myocytes, Biochem. J., 349, 323, 10.1042/0264-6021:3490323
Jaggar, 1998, Ca2+ channels, ryanodine receptors and Ca(2+)-activated K+ channels: a functional unit for regulating arterial tone, Acta Physiol. Scand., 164, 577, 10.1046/j.1365-201X.1998.00462.x
Mironneau, 1996, Ca2+ sparks and Ca2+ waves activate different Ca(2+)-dependent ion channels in single myocytes from rat portal vein, Cell Calcium, 20, 153, 10.1016/S0143-4160(96)90104-9
Yao, 1995, Quantal puffs of intracellular Ca2+ evoked by inositol trisphosphate in Xenopus oocytes, J. Physiol., 482, 533, 10.1113/jphysiol.1995.sp020538
Marin, 1999, Mechanisms involved in the cellular calcium homeostasis in vascular smooth muscle: calcium pumps, Life Sci., 64, 279, 10.1016/S0024-3205(98)00393-2
Toescu, 1995, Temporal and spatial heterogeneities of Ca2+ signaling: mechanisms and physiological roles, Am. J. Physiol., 269, G173
Wellman, 2003, Signaling between SR and plasmalemma in smooth muscle: sparks and the activation of Ca2+-sensitive ion channels, Cell Calcium, 34, 211, 10.1016/S0143-4160(03)00124-6
Crnich, 2010, Vasoconstriction resulting from dynamic membrane trafficking of TRPM4 in vascular smooth muscle cells, Am. J. Physiol. Cell Physiol., 299, C682, 10.1152/ajpcell.00101.2010
Matveev, 2004, Facilitation through buffer saturation: constraints on endogenous buffering properties, Biophys. J., 86, 2691, 10.1016/S0006-3495(04)74324-6
Smith, 2009, Imaging the quantal substructure of single IP3R channel activity during Ca2+ puffs in intact mammalian cells, Proc. Natl. Acad. Sci. U.S.A., 106, 6404, 10.1073/pnas.0810799106
Bruno, 2010, Quantifying calcium fluxes underlying calcium puffs in Xenopus laevis oocytes, Cell Calcium, 47, 273, 10.1016/j.ceca.2009.12.012
Allbritton, 1992, Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate, Science, 258, 1812, 10.1126/science.1465619
Zimmermann, 1995, Kinetics of prephosphorylation reactions and myosin light chain phosphorylation in smooth muscle. Flash photolysis studies with caged calcium and caged ATP, J. Biol. Chem., 270, 23966, 10.1074/jbc.270.41.23966
Naraghi, 1997, Linearized buffered Ca2+ diffusion in microdomains and its implications for calculation of [Ca2+] at the mouth of a calcium channel, J. Neurosci., 17, 6961, 10.1523/JNEUROSCI.17-18-06961.1997
Falke, 1994, Molecular tuning of ion binding to calcium signaling proteins, Q. Rev. Biophys., 27, 219, 10.1017/S0033583500003012
Sanabria, 2008, Spatial diffusivity and availability of intracellular calmodulin, Biophys. J., 95, 6002, 10.1529/biophysj.108.138974
Ullrich, 2005, Comparison of functional properties of the Ca2+-activated cation channels TRPM4 and TRPM5 from mice, Cell Calcium, 37, 267, 10.1016/j.ceca.2004.11.001
Grand, 2008, 9-phenanthrol inhibits human TRPM4 but not TRPM5 cationic channels, Br. J. Pharmacol., 153, 1697, 10.1038/bjp.2008.38
Xi, 2008, IP3 constricts cerebral arteries via IP3 receptor-mediated TRPC3 channel activation and independently of sarcoplasmic reticulum Ca2+ release, Circ. Res., 102, 1118, 10.1161/CIRCRESAHA.108.173948
Neher, 1998, Vesicle pools and Ca2+ microdomains: new tools for understanding their roles in neurotransmitter release, Neuron, 20, 389, 10.1016/S0896-6273(00)80983-6
Fakler, 2008, Control of K(Ca) channels by calcium nano/microdomains, Neuron, 59, 873, 10.1016/j.neuron.2008.09.001
Adebiyi, 2011, Caveolin-1 assembles type 1 inositol 1,4,5-trisphosphate receptors and canonical transient receptor potential 3 channels into a functional signaling complex in arterial smooth muscle cells, J. Biol. Chem., 286, 4341, 10.1074/jbc.M110.179747
Adebiyi, 2010, Isoform-selective physical coupling of TRPC3 channels to IP3 receptors in smooth muscle cells regulates arterial contractility, Circ. Res., 106, 1603, 10.1161/CIRCRESAHA.110.216804
Ohya, 1998, Stretch-activated channels in arterial smooth muscle of genetic hypertensive rats, Hypertension, 31, 254, 10.1161/01.HYP.31.1.254
Park, 2003, Mechanosensitive cation channels in arterial smooth muscle cells are activated by diacylglycerol and inhibited by phospholipase C inhibitor, Circ. Res., 93, 557, 10.1161/01.RES.0000093204.25499.83
Wu, 2003, Behavior of nonselective cation channels and large-conductance Ca2+-activated K+ channels induced by dynamic changes in membrane stretch in cultured smooth muscle cells of human coronary artery, J. Cardiovasc. Electrophysiol., 14, 44, 10.1046/j.1540-8167.2003.02040.x
Nilius, 2004, Intracellular nucleotides and polyamines inhibit the Ca2+-activated cation channel TRPM4b, Pflugers Arch., 448, 70, 10.1007/s00424-003-1221-x
Nilius, 2005, The selectivity filter of the cation channel TRPM4, J. Biol. Chem., 280, 22899, 10.1074/jbc.M501686200
Oliver, 2000, Polyamines as gating molecules of inward-rectifier K+ channels, Eur. J. Biochem., 267, 5824, 10.1046/j.1432-1327.2000.01669.x
Stanfield, 2003, Spermine is fit to block inward rectifier (Kir) channels, J. Gen. Physiol., 122, 481, 10.1085/jgp.200308957
Reading, 2007, Central role of TRPM4 channels in cerebral blood flow regulation, Stroke, 38, 2322, 10.1161/STROKEAHA.107.483404
Horn, 1988, Muscarinic activation of ionic currents measured by a new whole-cell recording method, J. Gen. Physiol., 92, 145, 10.1085/jgp.92.2.145
Ruegg, 1983, Skinned coronary smooth muscle: calmodulin, calcium antagonists, and cAMP influence contractility, Basic Res. Cardiol., 78, 462, 10.1007/BF02070169
Nelson, 1995, Physiological roles and properties of potassium channels in arterial smooth muscle, Am. J. Physiol., 268, C799, 10.1152/ajpcell.1995.268.4.C799
Burdyga, 1999, The effect of cyclopiazonic acid on excitation-contraction coupling in guinea-pig ureteric smooth muscle: role of the sarcoplasmic reticulum, J. Physiol., 517, 855, 10.1111/j.1469-7793.1999.0855s.x
Sergeant, 2001, Role of IP(3) in modulation of spontaneous activity in pacemaker cells of rabbit urethra, Am. J. Physiol. Cell Physiol., 280, C1349, 10.1152/ajpcell.2001.280.5.C1349
Suzuki, 2002, Dual effects of cyclopiazonic acid on excitation of circular smooth muscle isolated from the guinea-pig gastric antrum, J. Smooth Muscle Res., 38, 23, 10.1540/jsmr.38.23
Janiak, 2001, Heterogeneity of calcium stores and elementary release events in canine pulmonary arterial smooth muscle cells, Am. J. Physiol. Cell Physiol., 280, C22, 10.1152/ajpcell.2001.280.1.C22
Helli, 2005, Cyclopiazonic acid activates a Ca2+-permeable, nonselective cation conductance in porcine and bovine tracheal smooth muscle, J. Appl. Physiol., 99, 1759, 10.1152/japplphysiol.00242.2005
Putney, 2011, The physiological function of store-operated calcium entry, Neurochem. Res., 36, 1157, 10.1007/s11064-010-0383-0
Rubart, 1996, Ca2+ currents in cerebral artery smooth muscle cells of rat at physiological Ca2+ concentrations, J. Gen. Physiol., 107, 459, 10.1085/jgp.107.4.459
Quayle, 1993, Single calcium channels in resistance-sized cerebral arteries from rats, Am. J. Physiol., 264, H470
Worley, 1991, Regulation of single calcium channels in cerebral arteries by voltage, serotonin, and dihydropyridines, Am. J. Physiol., 261, H1951
Knot, 1998, Ryanodine receptors regulate arterial diameter and wall [Ca2+] in cerebral arteries of rat via Ca2+-dependent K+ channels, J. Physiol., 508, 211, 10.1111/j.1469-7793.1998.211br.x
Augustine, 2003, Local calcium signaling in neurons, Neuron, 40, 331, 10.1016/S0896-6273(03)00639-1
Popescu, 2006, Caveolae in smooth muscles: nanocontacts, J. Cell. Mol. Med., 10, 960, 10.1111/j.1582-4934.2006.tb00539.x
Gherghiceanu, 2006, Caveolar nanospaces in smooth muscle cells, J. Cell. Mol. Med., 10, 519, 10.1111/j.1582-4934.2006.tb00417.x
Klingauf, 1997, Modeling buffered Ca2+ diffusion near the membrane: implications for secretion in neuroendocrine cells, Biophys. J., 72, 674, 10.1016/S0006-3495(97)78704-6
Hulvershorn, 2001, Calmodulin levels are dynamically regulated in living vascular smooth muscle cells, Am. J. Physiol. Heart Circ. Physiol., 280, H1422, 10.1152/ajpheart.2001.280.3.H1422
Dargan, 2004, Spatiotemporal patterning of IP3-mediated Ca2+ signals in Xenopus oocytes by Ca2+-binding proteins, J. Physiol., 556, 447, 10.1113/jphysiol.2003.059204