Endogenous UVA-photosensitizers: mediators of skin photodamage and novel targets for skin photoprotection

Photochemical & Photobiological Sciences - Tập 5 Số 2 - Trang 215-237 - 2006
Georg T. Wondrak1, Myron K. Jacobson1, Elaine L. Jacobson1
1Department of Pharmacology and Toxicology, College of Pharmacy, Arizona Cancer Center, 1515 North Campbell Avenue, Tucson, AZ, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

R. M. Tyrrell, Ultraviolet radiation and free radical damage to skin, Biochem. Soc. Symp., 1995, 61, 47–53.

E. Kvam, R. M. Tyrrell, Induction of oxidative DNA base damage in human skin cells by UV and near visible radiation, Carcinogenesis, 1997, 18, 2379–2384.

K. Scharffetter-Kochanek, M. Wlaschek, P. Brenneisen, M. Schauen, R. Blaudschun, J. Wenk, UV-induced reactive oxygen species in photocarcinogenesis and photoaging, Biol. Chem., 1997, 378, 11, 1247–1257.

F. R. de Gruijl, Photocarcinogenesis: UVA vs UVB, Methods Enzymol., 2000, 319, 359–366.

N. S. Agar, G. M. Halliday, R. S. Barnetson, H. N. Ananthaswamy, M. Wheller, A. M. Jones, The basal layer in human squamous tumors harbors more UVA than UVB fingerprint mutations: A role for UVA in human skin carcinogenesis, PNAS, 2004, 101, 14, 4954–4959.

Carbonare M. Dalle, M. A. Pathak, Skin photosensitizing agents and the role of reactive oxygen species in photoaging, J. Photochem. Photobiol. B., 1992, 14, 1–2, 105–124.

G. T. Wondrak, M. J. Roberts, M. K. Jacobson, E. L. Jacobson, Photosensitized growth inhibition of cultured human skin cells: mechanism and suppression of oxidative stress from solar irradiation of glycated proteins, J. Invest. Dermatol., 2002, 119, 2, 489–498.

G. T. Wondrak, M. J. Roberts, D. Cervantes-Laurean, M. K. Jacobson, E. L. Jacobson, Proteins of the Extracellular Matrix Are Sensitizers of Photo-oxidative Stress in Human Skin Cells, J. Invest. Dermatol., 2003, 121, 3, 578–586.

K. H. Kaidbey, P. P. Agin, R. M. Sayre, A. M. Kligman, Photoprotection by melanin-a comparison of black and Caucasian skin, J. Am. Acad. Dermatol., 1979, 1, 3, 249–260.

W. A. Bruls, H. van Weelden, J. C. van der Leun, Transmission of UV-radiation through human epidermal layers as a factor influencing the minimal erythema dose, Photochem. Photobiol., 1984, 39, 1, 63–67.

F. P. Gasparro, Sunscreens, skin photobiology, and skin cancer: the need for UVA protection and evaluation of efficacy, Environ. Health. Perspect., 2000, 108, Suppl 1, 71–78.

H. J. Sterenborg, J. C. van der Leun, Tumorigenesis by a long wavelength UV-A source, Photochem. Photobiol., 1990, 51, 3, 325–330.

G. Kelfkens, F. R. de Gruijl, J. C. van der Leun, Tumorigenesis by short-wave ultraviolet A: papillomas versus squamous cell carcinomas, Carcinogenesis, 1991, 12, 8, 1377–1382.

A. de Laat, J. C. van der Leun, F. R. de Gruijl, Carcinogenesis induced by UVA (365-nm) radiation: the dose-time dependence of tumor formation in hairless mice, Carcinogenesis, 1997, 18, 5, 1013–1020.

G. Kelfkens, F. R. de Gruijl, J. C. van der Leun, Ozone depletion and increase in annual carcinogenic ultraviolet dose, Photochem. Photobiol., 1990, 52, 4, 819–823.

R. B. Setlow, E. Grist, K. Thompson, A. D. Woodhead, Wavelengths effective in induction of malignant melanoma, Proc. Natl. Acad. Sci. USA, 1993, 90, 14, 6666–6670.

S. Q. Wang, R. Setlow, M. Berwick, D. Polsky, A. A. Marghoob, A. W. Kopf, R. S. Bart, Ultraviolet A and melanoma: a review, J. Am. Acad. Dermatol., 2001, 44, 5, 837–846.

J. Westerdahl, H. Olsson, A. Masback, C. Ingvar, N. Jonsson, L. Brandt, P. E. Jonsson, T. Moller, Use of sunbeds or sunlamps and malignant melanoma in southern Sweden, Am. J. Epidemiol., 1994, 140, 8, 691–699.

R. S. Stern, The risk of melanoma in association with long-term exposure to PUVA, J. Am. Acad. Dermatol., 2001, 44, 5, 755–761.

L. H. Kligman, F. J. Akin, A. M. Kligman, The contributions of UVA and UVB to connective tissue damage in hairless mice, J. Invest. Dermatol., 1985, 84, 4, 272–276.

R. Lavker, K. Kaidbey, The spectral dependence for UVA-induced cumulative damage in human skin, J. Invest. Dermatol., 1997, 108, 1, 17–21.

M. Wlaschek, I. Tantcheva-Poor, L. Naderi, W. Ma, L. A. Schneider, Z. Razi-Wolf, J. Schuller, K. Scharffetter-Kochanek, Solar UV. irradiation and dermal photoaging, J. Photochem. Photobiol. B., 2001, 63, 1–3, 41–51.

C. Nishigori, Y. Hattori, S. Toyokuni, Role of reactive oxygen species in skin carcinogenesis, Antioxid. Redox Signal., 2004, 6, 3, 561–570.

C. S. Sander, F. Hamm, P. Elsner, J. J. Thiele, Oxidative stress in malignant melanoma and non-melanoma skin cancer, Br. J. Dermatol., 2003, 148, 5, 913–922.

J. Nishi, R. Ogura, M. Sugiyama, T. Hidaka, M. Kohno, Involvement of active oxygen in lipid peroxide radical reaction of epidermal homogenate following ultraviolet light exposure, J. Invest. Dermatol., 1991, 97, 1, 115–119.

D. Peus, R. A. Vasa, A. Meves, M. Pott, A. Beyerle, K. Squillace, M. R. Pittelkow, H2O2 is an important mediator of UVB-induced EGF-receptor phosphorylation in cultured keratinocytes, J. Invest. Dermatol., 1998, 110, 6, 966–971.

H. Yasui, H. Sakurai, Chemiluminescent detection and imaging of reactive oxygen species in live mouse skin exposed to UVA, Biochem. Biophys. Res. Commun., 2000, 269, 1, 131–136.

S. Kang, J. H. Chung, J. H. Lee, G. J. Fisher, Y. S. Wan, E. A. Duell, J. J. Voorhees, Topical N-Acetyl Cysteine and Genistein Prevent Ultraviolet-Light-Induced Signaling That Leads to Photoaging in Human Skin in vivo, J. Invest. Dermatol., 2003, 120, 5, 835–841.

C. Routaboul, A. Denis, A. Vinche, Immediate pigment darkening: description, kinetic and biological function, Eur. J. Dermatol., 1999, 9, 2, 95–99.

K. Maeda, M. Hatao, Involvement of photooxidation of melanogenic precursors in prolonged pigmentation induced by ultraviolet A, J. Invest. Dermatol., 2004, 122, 2, 503–509.

J. J. Thiele, C. Schroeter, S. N. Hsieh, M. Podda, L. Packer, The antioxidant network of the stratum corneum, Curr. Probl. Dermatol., 2001, 29, 26–42.

C. S. Sander, H. Chang, S. Salzmann, C. S. Muller, S. Ekanayake-Mudiyanselage, P. Elsner, J. J. Thiele, Photoaging is associated with protein oxidation in human skin in vivo, J. Invest. Dermatol., 2002, 118, 4, 618–625.

L. A. Applegate, C. Scaletta, R. Panizzon, E. Frenk, Evidence that ferritin is UV inducible in human skin: part of a putative defense mechanism, J. Invest. Dermatol., 1998, 111, 1, 159–163.

C. Meewes, P. Brenneisen, J. Wenk, L. Kuhr, W. Ma, J. Alikoski, A. Poswig, T. Krieg, K. Scharffetter-Kochanek, Adaptive antioxidant response protects dermal fibroblasts from UVA-induced phototoxicity, Free Radical Biol. Med., 2001, 30, 3, 238–247.

M. T. Leccia, M. Yaar, N. Allen, M. Gleason, B. A. Gilchrest, Solar simulated irradiation modulates gene expression and activity of antioxidant enzymes in cultured human dermal fibroblasts, Exp. Dermatol., 2001, 10, 4, 272–279.

R. M. Tyrrell, Solar ultraviolet A radiation: an oxidizing skin carcinogen that activates heme oxygenase-1, Antioxid. Redox Signal., 2004, 6, 5, 835–840.

L. Rittie, G. J. Fisher, UV-light-induced signal cascades and skin aging, Ageing. Res. Rev., 2002, 1, 4, 705–720.

S. Gross, A. Knebel, T. Tenev, A. Neininger, M. Gaestel, P. Herrlich, F. D. Bohmer, Inactivation of protein-tyrosine phosphatases as mechanism of UV-induced signal transduction, J. Biol. Chem., 1999, 274, 37, 26378–26386.

Y. S. Wan, Z. Q. Wang, J. Voorhees, G. Fisher, EGF receptor crosstalks with cytokine receptors leading to the activation of c-Jun kinase in response to UV irradiation in human keratinocytes, Cell. Signal., 2001, 13, 2, 139–144.

S. Grether-Beck, G. Bonizzi, H. Schmitt-Brenden, I. Felsner, A. Timmer, H. Sies, J. P. Johnson, J. Piette, J. Krutmann, Non-enzymatic triggering of the ceramide signalling cascade by solar UVA radiation, EMBO J., 2000, 19, 21, 5793–5800.

M. Karin, Mitogen-activated protein kinase cascades as regulators of stress responses, Ann. N. Y. Acad. Sci., 1998, 851, 139–146.

L. O. Klotz, C. Pellieux, K. Briviba, C. Pierlot, J. M. Aubry, H. Sies, Mitogen-activated protein kinase (p38-, JNK-, ERK-) activation pattern induced by extracellular and intracellular singlet oxygen and UVA, Eur. J. Biochem., 1999, 260, 3, 917–922.

D. Peus, M. R. Pittelkow, Reactive oxygen species as mediators of UVB-induced mitogen-activated protein kinase activation in keratinocytes, Curr. Probl. Dermatol., 2001, 29, 114–127.

M. A. Bachelor, A. L. Silvers, G. T. Bowden, The role of p38 in UVA-induced cyclooxygenase-2 expression in the human keratinocyte cell line, HaCaT, Oncogene, 2002, 21, 46, 7092–7099.

G. F. Vile, A. Tanew-Ilitschew, R. M. Tyrrell, Activation of NF-kappa B. in human skin fibroblasts by the oxidative stress generated by UVA radiation, Photochem. Photobiol., 1995, 62, 3, 463–468.

S. Grether-Beck, S. Olaizola-Horn, H. Schmitt, M. Grewe, A. Jahnke, J. P. Johnson, K. Briviba, H. Sies, J. Krutmann, Activation of transcription factor AP-2 mediates UVA radiation- and singlet oxygen-induced expression of the human intercellular adhesion molecule 1 gene, Proc. Natl. Acad. Sci. USA, 1996, 93, 25, 14586–14591.

H. Nakano, F. P. Gasparro, J. Uitto, UVA-340 as energy source, mimicking natural sunlight, activates the transcription factor AP-1 in cultured fibroblasts: evidence for involvement of protein kinase-C, Photochem. Photobiol., 2001, 74, 2, 274–282.

L. O. Klotz, N. J. Holbrook, H. Sies, UVA and singlet oxygen as inducers of cutaneous signaling events, Curr. Probl. Dermatol., 2001, 29, 95–113.

M. S. Matsui, V. A. DeLeo, Longwave ultraviolet radiation and promotion of skin cancer, Cancer Cells, 1991, 3, 1, 8–12.

T. Schwarz, Photoimmunosuppression, Photodermatol. Photoimmunol. Photomed., 2002, 18, 3, 141–145.

L. O. Klotz, K. D. Kroncke, H. Sies, Singlet oxygen-induced signaling effects in mammalian cells, Photochem. Photobiol. Sci., 2003, 2, 2, 88–94.

S. S. Brar, T. P. Kennedy, A. B. Sturrock, T. P. Huecksteadt, M. T. Quinn, T. M. Murphy, P. Chitano, J. R. Hoidal, NADPH oxidase promotes NF-kappaB activation and proliferation in human airway smooth muscle, Am. J. Physiol. Lung Cell. Mol. Physiol., 2002, 282, 4, L782–L795.

T. P. Szatrowski, C. F. Nathan, Production of large amounts of hydrogen peroxide by human tumor cells, Cancer Res., 1991, 51, 3, 794–798.

R. Gniadecki, T. Thorn, J. Vicanova, A. Petersen, H. C. Wulf, Role of mitochondria in ultraviolet-induced oxidative stress, J. Cell. Biochem., 2000, 80, 2, 216–222.

R. Gniadecki, N. Christoffersen, H. C. Wulf, Cholesterol-rich plasma membrane domains (lipid rafts) in keratinocytes: importance in the baseline and UVA-induced generation of reactive oxygen species, J. Invest. Dermatol., 2002, 118, 4, 582–588.

C. S. Foote, Definition of type I and type II photosensitized oxidation, Photochem. Photobiol., 1991, 54, 5, 659.

J. Paczkowski, J. J. Lamberts, B. Paczkowska, D. C. Neckers, Photophysical properties of rose bengal and its derivatives (XII), J. Free Radical Biol. Med., 1985, 1, 5–6, 341–351.

C. S. Foote, Mechanisms of photosensitized oxidation. There are several different types of photosensitized oxidation which may be important in biological systems, Science, 1968, 162, 857, 963–970.

F. Elisei, L. Latterini, G. G. Aloisi, U. Mazzucato, G. Viola, G. Miolo, D. Vedaldi, F. Dall℉Acqua, Excited-state properties and in vitro phototoxicity studies of three phenothiazine derivatives, Photochem. Photobiol., 2002, 75, 1, 11–21.

M. J. Davies, Reactive species formed on proteins exposed to singlet oxygen, Photochem. Photobiol. Sci., 2004, 3, 1, 17–25.

A. W. Girotti, Photosensitized oxidation of membrane lipids: reaction pathways, cytotoxic effects, and cytoprotective mechanisms, J. Photochem. Photobiol. B., 2001, 63, 1-3, 103–113.

G. D. Ouedraogo, R. W. Redmond, Secondary reactive oxygen species extend the range of photosensitization effects in cells: DNA damage produced via initial membrane photosensitization, Photochem. Photobiol., 2003, 77, 2, 192–203.

M. J. Peak, J. G. Peak, B. A. Carnes, Induction of direct and indirect single-strand breaks in human cell DNA by far- and near-ultraviolet radiations: action spectrum and mechanisms, Photochem. Photobiol., 1987, 45, 3, 381–387.

C. Kielbassa, L. Roza, B. Epe, Wavelength dependence of oxidative DNA damage induced by UV and visible light, Carcinogenesis, 1997, 18, 4, 811–816.

D. E. Brash, J. A. Rudolph, J. A. Simon, A. Lin, G. J. McKenna, H. P. Baden, A. J. Halperin, J. Ponten, A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma, Proc. Natl. Acad. Sci. USA, 1991, 88, 22, 10124–10128.

A. Ziegler, D. J. Leffell, S. Kunala, H. W. Sharma, M. Gailani, J. A. Simon, A. J. Halperin, H. P. Baden, P. E. Shapiro, A. E. Bale, et al., Mutation hotspots due to sunlight in the p53 gene of nonmelanoma skin cancers, Proc. Natl. Acad. Sci. USA, 1993, 90, 9, 4216–4220.

J. Cadet, C. Anselmino, T. Douki, L. Voituriez, Photochemistry of nucleic acids in cells, J. Photochem. Photobiol. B., 1992, 15, 4, 277–298.

A. A. Lamola, J. P. Mittal, Solution photochemistry of thymine and uracil, Science, 1966, 154, 756, 1560–1561.

T. Delatour, T. Douki, C. D℉Ham, J. Cadet, Photosensitization of thymine nucleobase by benzophenone through energy transfer, hydrogen abstraction and one-electron oxidation, J. Photochem. Photobiol. B., 1998, 9, 105–116.

A. Moysan, A. Viari, P. Vigny, L. Voituriez, J. Cadet, E. Moustacchi, E. Sage, Formation of cyclobutane thymine dimers photosensitized by pyridopsoralens: quantitative and qualitative distribution within DNA, Biochemistry, 1991, 30, 29, 7080–7088.

T. Douki, A. Reynaud-Angelin, J. Cadet, E. Sage, Bipyrimidine photoproducts rather than oxidative lesions are the main type of DNA damage involved in the genotoxic effect of solar UVA radiation, Biochemistry, 2003, 42, 30, 9221–9226.

S. Courdavault, C. Baudouin, M. Charveron, A. Favier, J. Cadet, T. Douki, Larger yield of cyclobutane dimers than 8-oxo-7,8-dihydroguanine in the DNA of UVA-irradiated human skin cells, Mutat. Res., 2004, 556, 1–2, 135–142.

H. Kasai, Z. Yamaizumi, F. Yamamoto, T. Bessho, S. Nishimura, M. Berger, J. Cadet, Photosensitized formation of 8-hydroxyguanine (7,8-dihydro-8-oxoguanine) in DNA by riboflavin, Nucleic. Acids. Symp. Ser., 1992, 27, 181–182.

K. Ito, S. Kawanishi, Site-specific DNA. damage induced by UVA radiation in the presence of endogenous photosensitizer, Biol. Chem., 1997, 378, 11, 1307–1312.

G. M. Halliday, N. S. Agar, R. S. Barnetson, H. N. Ananthaswamy, A. M. Jones, UV-A fingerprint mutations in human skin cancer, Photochem. Photobiol., 2005, 81, 1, 3–8.

M. Berneburg, S. Grether-Beck, V. Kurten, T. Ruzicka, K. Briviba, H. Sies, J. Krutmann, Singlet oxygen mediates the UVA-induced generation of the photoaging-associated mitochondrial common deletion, J. Biol. Chem., 1999, 274, 22, 15345–15349.

J. Moan, Q. Peng, An outline of the hundred-year history of PDT, Anticancer Res., 2003, 23, 5A, 3591–3600.

L. Kaestner, A. Juzeniene, J. Moan, Erythrocytes-the ‘house elves’ of photodynamic therapy, Photochem. Photobiol. Sci., 2004, 3, 11–12, 981–989.

F. Ricchelli, Photophysical properties of porphyrins in biological membranes, J. Photochem. Photobiol. B, 1995, 29, 2–3, 109–118.

I. A. Menon, M. A. Becker, S. D. Persad, H. F. Haberman, Quantitation of hydrogen peroxide formed during UV-visible irradiation of protoporphyrin, coproporphyrin and uroporphyrin, Clin. Chim. Acta., 1990, 186, 3, 375–381.

D. P. Buchczyk, L. O. Klotz, K. Lang, C. Fritsch, H. Sies, High efficiency of 5-aminolevulinate - photodynamic treatment using UVA irradiation, Carcinogenesis, 2001, 22, 6, 879–883.

L. Ma, S. Bagdonas, J. Moan, The photosensitizing effect of the photoproduct of protoporphyrin IX, J. Photochem. Photobiol. B., 2001, 60, 2–3, 108–113.

D. E. Heck, A. M. Vetrano, T. M. Mariano, J. D. Laskin, UVB light stimulates production of reactive oxygen species: unexpected role for catalase, J. Biol. Chem., 2003, 278, 25, 22432–22436.

A. King, E. Gottlieb, D. G. Brooks, M. P. Murphy, J. L. Dunaief, Mitochondria-derived reactive oxygen species mediate blue light-induced death of retinal pigment epithelial cells, Photochem. Photobiol., 2004, 79, 5, 470–475.

S. Dore, M. Takahashi, C. D. Ferris, R. Zakhary, L. D. Hester, D. Guastella, S. H. Snyder, Bilirubin, formed by activation of heme oxygenase-2, protects neurons against oxidative stress injury, Proc. Natl. Acad. Sci. USA, 1999, 96, 5, 2445–2450.

L. Cheng, D. A. Lightner, A new photoisomerization of bilirubin, Photochem. Photobiol., 1999, 70, 6, 941–948.

B. S. Rosenstein, J. M. Ducore, S. W. Cummings, The mechanism of bilirubin-photosensitized DNA strand breakage in human cells exposed to phototherapy light, Mutat. Res., 1983, 112, 6, 397–406.

T. Christensen, E. B. Roll, A. Jaworska, G. Kinn, Bilirubin- and light induced cell death in a murine lymphoma cell line, J. Photochem. Photobiol. B., 2000, 58, 2-3, 170–174.

Melanin: Its role in human photoprotection, ed. L. Zeise, M. R. Chedekel and T. B. Fitzpatrick, Valdenmar Publishing Company, Overland Park, KS, 1995, pp. 1–320.

J. Moan, A. Dahlback, R. B. Setlow, Epidemiological support for an hypothesis for melanoma induction indicating a role for UVA radiation, Photochem. Photobiol., 1999, 70, 2, 243–247.

A. Yoneta, T. Yamashita, H. Y. Jin, S. Kondo, K. Jimbow, Ectopic expression of tyrosinase increases melanin synthesis and cell death following UVB irradiation in fibroblasts from familial atypical multiple mole and melanoma (FAMMM) patients, Melanoma. Res., 2004, 14, 5, 387–394.

F. L. Meyskens, Jr., P. Farmer, J. P. Fruehauf, Redox regulation in human melanocytes and melanoma, Pigm. Cell. Res., 2001, 14, 3, 148–154.

Y. Liu, L. Hong, K. Wakamatsu, S. Ito, B. Adhyaru, C. Cheng, C. R. Bowers, J. D. Simon, Comparison of structural and chemical properties of black and red human hair melanosomes, Photochem. Photobiol., 2005, 81, 135–144.

A. Napolitano, Donato P. Di, G. Prota, New regulatory mechanisms in the biosynthesis of pheomelanins: rearrangement vs. redox exchange reaction routes of a transient 2H-1,4-benzothiazine-o-quinonimine intermediate, Biochim. Biophys. Acta., 2000, 1475, 1, 47–45.

T. G. Salopek, K. Yamada, S. Ito, K. Jimbow, Dysplastic melanocytic nevi contain high levels of pheomelanin: quantitative comparison of pheomelanin/eumelanin levels between normal skin, common nevi, and dysplastic nevi, Pigm. Cell. Res., 1991, 4, 4, 172–179.

G. Agrup, C. Lindbladh, G. Prota, H. Rorsman, A. M. Rosengren, E. Rosengren, Trichochromes in the urine of melanoma patients, J. Invest. Dermatol., 1978, 70, 2, 90–91.

T. Horikoshi, S. Ito, K. Wakamatsu, H. Onodera, H. Eguchi, Evaluation of melanin-related metabolites as markers of melanoma progression, Cancer, 1994, 73, 3, 629–636.

M. R. Vincensi, M. d℉Ischia, A. Napolitano, E. M. Procaccini, G. Riccio, G. Monfrecola, P. Santoianni, G. Prota, Phaeomelanin vs. eumelanin as a chemical indicator of ultraviolet sensitivity in fair-skinned subjects at high risk for melanoma: a pilot study, Melanoma Res., 1998, 8, 1, 53–58.

I. A. Menon, S. Persad, N. S. Ranadive, H. F. Haberman, Effects of ultraviolet-visible irradiation in the presence of melanin isolated from human black or red hair upon Ehrlich ascites carcinoma cells, Cancer Res., 1983, 43, 7, 3165–3169.

E. Kvam, R. M. Tyrrell, The role of melanin in the induction of oxidative DNA base damage by ultraviolet A irradiation of DNA or melanoma cells, J. Invest. Dermatol., 1999, 113, 2, 209–213.

C. Kipp, A. R. Young, The soluble eumelanin precursor 5,6-dihydroxyindole-2-carboxylic acid enhances oxidative damage in human keratinocyte DNA after UVA irradiation, Photochem. Photobiol., 1999, 70, 2, 191–198.

L. Marrot, J. P. Belaidi, J. R. Meunier, P. Perez, C. Agapakis-Causse, The human melanocyte as a particular target for UVA radiation and an endpoint for photoprotection assessment, Photochem. Photobiol., 1999, 69, 6, 686–693.

E. Wenczl, G. P. van der Schans, L. Roza, R. M. Kolb, A. J. Timmerman, N. P. Smit, S. Pavel, A. A. Schothorst, (Pheo)melanin photosensitizes UVA-induced DNA. damage in cultured human melanocytes, J. Invest. Dermatol., 1998, 111, 4, 678–682.

S. Takeuchi, W. Zhang, K. Wakamatsu, S. Ito, V. J. Hearing, K. H. Kraemer, D. E. Brash, Melanin acts as a potent UVB photosensitizer to cause an atypical mode of cell death in murine skin, Proc. Natl. Acad. Sci. USA, 2004, 101, 42, 15076–15081.

E. Kvam, J. Dahle, Melanin synthesis may sensitize melanocytes to oxidative DNA damage by ultraviolet A radiation and protect melanocytes from direct DNA damage by ultraviolet B radiation, Pigm. Cell. Res., 2004, 17, 5, 549–550.

E. J. Land, A. Thompson, T. G. Truscott, K. V. Subbarao, M. R. Chedekel, Photochemistry of melanin precursors: dopa, 5-S-cysteinyldopa and 2,5-S,S℉-dicysteinyldopa, Photochem. Photobiol., 1986, 44, 6, 697–702.

W. H. Koch, M. R. Chedekel, Photoinitiated DNA. damage by melanogenic intermediates in vitro, Photochem. Photobiol., 1986, 44, 6, 703–710.

B. Pilas, C. C. Felix, T. Sarna, B. Kalyanaraman, Photolysis of pheomelanin precursors: an ESR-spin trapping study, Photochem. Photobiol., 1986, 44, 6, 689–696.

W. Korytowski, B. Pilas, T. Sarna, B. Kalyanaraman, Photoinduced generation of hydrogen peroxide and hydroxyl radicals in melanins, Photochem. Photobiol., 1987, 45, 2, 185–190.

K. Jimbow, K. Reszka, S. Schmitz, T. Salopek and P. Thomas, Distribution of eu- and pheomelanins in human skin and melanocytic tumors, and their photoprotective vs. phototoxic properties, in Melanin: Its role in human photoprotection, ed. L. Zeise, M. R. Chedekel and T. B. Fitzpatrick, Valdenmar Publishing Company, Overland Park, KS, 1995, pp. 155–175.

T. Ye, L. E. Lamb, K. Wakamatsu, S. Ito, J. D. Simon, Ultrafast absorption and photothermal studies of decarboxytrichochrome C in solution, Photochem. Photobiol. Sci., 2003, 2, 7, 821–823.

A. M. Edwards, C. Bueno, A. Saldano, E. Silva, K. Kassab, L. Polo, G. Jori, Photochemical and pharmacokinetic properties of selected flavins, J. Photochem. Photobiol. B., 1999, 48, 1, 36–41.

R. M. Kowalczyk, E. Schleicher, R. Bittl, S. Weber, The photoinduced triplet of flavins and its protonation states, J. Am. Chem. Soc., 2004, 126, 36, 11393–11399.

E. Silva, M. Jopia, A. M. Edwards, E. Lemp, J. R. de la Fuente, E. Lissi, Protective effect of Boldo and tea infusions on the visible light-mediated pro-oxidant effects of vitamin B2, riboflavin, Photochem. Photobiol., 2002, 75, 6, 585–590.

D. R. Cardoso, D. W. Franco, K. Olsen, M. L. Andersen, L. H. Skibsted, Reactivity of bovine whey proteins, peptides, and amino acids toward triplet riboflavin as studied by laser flash photolysis, J. Agric. Food Chem., 2004, 52, 21, 6602–6606.

R. Ugarte, A. M. Edwards, M. S. Diez, A. Valenzuela, E. Silva, Riboflavin-photosensitized anaerobic modification of rat lens proteins. A correlation with age-related changes, J. Photochem. Photobiol. B., 1992, 13, 2, 161–168.

Y. Kato, K. Uchida, S. Kawakishi, Aggregation of collagen exposed to UVA in the presence of riboflavin: a plausible role of tyrosine modification, Photochem. Photobiol., 1994, 59, 3, 343–349.

K. Sato, H. Taguchi, T. Maeda, H. Minami, Y. Asada, Y. Watanabe, K. Yoshikawa, The primary cytotoxicity in ultraviolet-a-irradiated riboflavin solution is derived from hydrogen peroxide, J. Invest. Dermatol., 1995, 105, 4, 608–612.

A. Mahns, I. Melchheier, C. V. Suschek, H. Sies, L. O. Klotz, Irradiation of cells with ultraviolet-A (320-400 nm) in the presence of cell culture medium elicits biological effects due to extracellular generation of hydrogen peroxide, Free Radical Res., 2003, 37, 4, 391–397.

W. T. Speck, C. C. Chen, H. S. Rosenkranz, In vitro studies of effects of light and riboflavin on DNA and HeLa cells, Pediatr. Res., 1975, 9, 3, 150–153.

K. Ito, S. Inoue, K. Yamamoto, S. Kawanishi, 8-Hydroxydeoxyguanosine formation at the 5℉ site of 5℉-GG-3℉ sequences in double-stranded DNA by UV radiation with riboflavin, J. Biol. Chem., 1993, 268, 18, 13221–13227.

F. Yamamoto, S. Nishimura, H. Kasai, Photosensitized formation of 8-hydroxydeoxyguanosine in cellular DNA by riboflavin, Biochem. Biophys. Res. Commun., 1992, 187, 2, 809–813.

A. H. Thomas, C. Lorente, A. L. Capparelli, C. G. Martinez, A. M. Braun, E. Oliveros, Singlet oxygen (1Δg) production by pterin derivatives in aqueous solutions, Photochem. Photobiol. Sci., 2003, 2, 3, 245–250.

K. Ito, S. Kawanishi, Photoinduced hydroxylation of deoxyguanosine in DNA by pterins: sequence specificity and mechanism, Biochemistry, 1997, 36, 7, 1774–1781.

H. Rokos, W. D. Beazley, K. U. Schallreuter, Oxidative stress in vitiligo: photo-oxidation of pterins produces H(2)O(2) and pterin-6-carboxylic acid, Biochem. Biophys. Res. Commun., 2002, 292, 4, 805–811.

R. F. Branda, J. W. Eaton, Skin color and nutrient photolysis: an evolutionary hypothesis, Science, 1978, 201, 4356, 625–626.

G. Cremer-Bartels, I. Ebels, Pteridines as nonretinal regulators of light-dependent melatonin biosynthesis, Proc. Natl. Acad. Sci. USA, 1980, 77, 5, 2415–2418.

Y. Murata, K. Kumano, T. Ueda, N. Araki, T. Nakamura, M. Tani, Photosensitive dermatitis caused by pyridoxine hydrochloride, J. Am. Acad. Dermatol., 1998, 39, 2 Pt 2, 314–317.

G. Shwartzman, A. Fisher, Studies on antibacterial properties of irradiated pyridoxamine, J. Biol. Chem., 1947, 167, 345–362.

G. T. Wondrak, M. J. Roberts, M. K. Jacobson, E. L. Jacobson, 3-hydroxypyridine chromophores are endogenous sensitizers of photooxidative stress in human skin cells, J. Biol. Chem., 2004, 279, 29, 30009–30020.

S. P. Coburn, A. Slominski, J. D. Mahuren, J. Wortsman, L. Hessle, J. L. Millan, Cutaneous metabolism of vitamin B-6, J. Invest. Dermatol., 2003, 120, 2, 292–300.

K. Sato, H. Taguchi, T. Maeda, K. Yoshikawa, Pyridoxine toxicity to cultured fibroblasts caused by near-ultraviolet light, J. Invest. Dermatol, 1993, 100, 3, 266–270.

B. K. Ohta, C. S. Foote, Characterization of endoperoxide and hydroperoxide intermediates in the reaction of pyridoxine with singlet oxygen, J. Am. Chem. Soc., 2002, 124, 41, 12064–12065.

P. Bilski, M. Y. Li, M. Ehrenshaft, M. E. Daub, C. F. Chignell, Vitamin B6 (pyridoxine) and its derivatives are efficient singlet oxygen quenchers and potential fungal antioxidants, Photochem. Photobiol., 2000, 71, 2, 129–134.

M. L. Cunningham, N. I. Krinsky, S. M. Giovanazzi, M. J. Peak, Superoxide anion is generated from cellular metabolites by solar radiation and its components, J. Free Radical Biol. Med., 1985, 1, 5-6, 381–385.

T. G. Burchuladze, G. Fraikin, [Mechanism of NADH-sensitized formation of DNA breaks during irradiation with near UV light], Mol. Biol. (Moscow), 1991, 25, 4, 955–959.

B. Czochralska, W. G. B. Kawczynski, D. Shugar, Oxidation of excited state NADH and NAD dimer in aqueous medium: involvement of O2- as a mediator in the presence of oxygen, Biochim. Biophys. Acta., 1984, 801, 403–409.

R. S. Bodaness, P. C. Chan, Singlet oxygen as a mediator in the hematoporphyrin-catalyzed photooxidation of NADPH to NADP+ in deuterium oxide, J. Biol. Chem., 1977, 252, 23, 8554–8560.

V. Kirveliene, R. Rotomskis, A. Pugzlys, G. Slekys, V. Krasauskas, A. Piskarskas, B. Juodka, Fluence-rate-dependent photosensitized oxidation of NADH, J. Photochem. Photobiol. B., 1993, 21, 1, 53–60.

B. W. Pogue, J. D. Pitts, M. A. Mycek, R. D. Sloboda, C. M. Wilmot, J. F. Brandsema, J. A. O℉Hara, In vivo NADH fluorescence monitoring as an assay for cellular damage in photodynamic therapy, Photochem. Photobiol., 2001, 74, 6, 817–824.

F. Petrat, S. Pindiur, M. Kirsch, H. de Groot, NAD(P)H, a primary target of 1O2 in mitochondria of intact cells, J. Biol. Chem., 2003, 278, 5, 3298–3307.

M. Kirsch, Groot H. De, NAD(P)H, a directly operating antioxidant?, FASEB J., 2001, 15, 9, 1569–1574.

C. C. Winterbourn, Free radical toxicology and antioxidant defence, Clin. Exp. Pharmacol. Physiol., 1995, 22, 11, 877–880.

M. K. Jacobson, B. Tastoush, D. L. Coyle, M. Kim, H. Kim, E. L. Jacobson, Elevation of Skin Cell NAD Content by Topical Application of Pro-NAD Compounds, J. Invest. Dermatol., 2000, 114, 849.

E. L. Jacobson, P. U. Giacomoni, M. J. Roberts, G. T. Wondrak, M. K. Jacobson, Optimizing the energy status of skin cells during solar radiation, J. Photochem. Photobiol. B., 2001, 63, 1-3, 141–147.

T. Mohammad, H. Morrison, H. HogenEsch, Urocanic acid photochemistry and photobiology, Photochem. Photobiol., 1999, 69, 2, 115–135.

C. M. Chuong, B. J. Nickoloff, P. M. Elias, L. A. Goldsmith, E. Macher, P. A. Maderson, J. P. Sundberg, H. Tagami, P. M. Plonka, K. Thestrup-Pederson, B. A. Bernard, J. M. Schroder, P. Dotto, C. M. Chang, M. L. Williams, K. R. Feingold, L. E. King, A. M. Kligman, J. L. Rees, E. Christophers, What is the ‘true’ function of skin?, Exp. Dermatol., 2002, 11, 2, 159–187.

H. Morrison, D. Avnir, C. Bernasconi, G. Fagan, Z/E Photoisomerization of urocanic acid, Photochem. Photobiol., 1980, 32, 711–714.

N. Haralampus-Grynaviski, C. Ransom, T. Ye, M. Rozanowska, M. Wrona, T. Sarna, J. D. Simon, Photogeneration and quenching of reactive oxygen species by urocanic acid, J. Am. Chem. Soc., 2002, 124, 13, 3461–3468.

E. L. Menon, H. Morrison, Formation of singlet oxygen by urocanic acid by UVA irradiation and some consequences thereof, Photochem. Photobiol., 2002, 75, 6, 565–569.

K. M. Hanson, J. D. Simon, Epidermal trans-urocanic acid and the UV-A-induced photoaging of the skin, Proc. Natl. Acad. Sci. USA, 1998, 95, 18, 10576–10578.

J. P. McCormick, J. R. Fischer, J. P. Pachlatko, A. Eisenstark, Characterization of a cell-lethal product from the photooxidation of tryptophan: hydrogen peroxide, Science, 1976, 191, 4226, 468–469.

J. Craggs, S. H. Kirk, S. I. Ahmad, Synergistic action of near-UV and phenylalanine, tyrosine or tryptophan on the inactivation of phage T7: role of superoxide radicals and hydrogen peroxide, J. Photochem. Photobiol. B., 1994, 24, 2, 123–128.

P. Walrant, R. Santus, N-formyl-kynurenine, a tryptophan photooxidation product, as a photodynamic sensitizer, Photochem. Photobiol., 1974, 19, 6, 411–417.

A. Pirie, Formation of N℉-formylkynurenine in proteins from lens and other sources by exposure to sunlight, Biochem. J., 1971, 125, 1, 203–208.

L. I. Grossweiner, Photochemistry of proteins: a review, Curr. Eye Res., 1984, 3, 1, 137–144.

J. A. Aquilina, R. J. Truscott, Identifying sites of attachment of UV filters to proteins in older human lenses, Biochim. Biophys. Acta., 2002, 1596, 1, 6–15.

N. R. Parker, J. F. Jamie, M. J. Davies, R. J. Truscott, Protein-bound kynurenine is a photosensitizer of oxidative damage, Free Radical Biol. Med., 2004, 37, 9, 1479–1489.

R. K. Sindhu, F. E. Wagner, Y. Kikkawa, Induction of cytochrome p450 1A1 and 1B1 by photooxidized tryptophan in transformed human keratinocytes, Adv. Exp. Med. Biol., 2003, 527, 297–306.

J. J. Thiele, S. N. Hsieh, K. Briviba, H. Sies, Protein oxidation in human stratum corneum: susceptibility of keratins to oxidation in vitro and presence of a keratin oxidation gradient in vivo, J. Invest. Dermatol., 1999, 113, 3, 335–339.

G. J. Smith, New trends in photobiology: photodegradation of keratin and other structural proteins, J. Photochem. Photobiol. B., 1995, 27, 187–198.

G. J. Smith, W. H. Melhuish, Relaxation and quenching of the excited states of tryptophan in keratin, J. Photochem. Photobiol. B., 1993, 17, 63–68.

D. G. Dyer, J. A. Dunn, S. R. Thorpe, K. E. Bailie, T. J. Lyons, D. R. McCance, J. W. Baynes, Accumulation of Maillard reaction products in skin collagen in diabetes and aging, J. Clin. Invest., 1993, 91, 6, 2463–2469.

C. Jeanmaire, L. Danoux, G. Pauly, Glycation during human dermal intrinsic and actinic ageing: an in vivo and in vitro model study, Br. J. Dermatol., 2001, 145, 1, 10–18.

G. T. Wondrak, D. Cervantes-Laurean, M. J. Roberts, J. G. Qasem, M. Kim, E. L. Jacobson, M. K. Jacobson, Identification of alpha-dicarbonyl scavengers for cellular protection against carbonyl stress, Biochem. Pharmacol., 2002, 63, 3, 361–373.

R. Abe, T. Shimizu, H. Sugawara, H. Watanabe, H. Nakamura, H. Choei, N. Sasaki, S. Yamagishi, M. Takeuchi, H. Shimizu, Regulation of human melanoma growth and metastasis by AGE-AGE receptor interactions, J. Invest. Dermatol., 2004, 122, 2, 461–467.

R. Tressl, G. T. Wondrak, R. P. Kruger, D. Rewicki, New Melanoidin-like Maillard Polymers from 2-Deoxypentoses, J. Agric. Food Chem., 1998, 46, 1, 104–110.

S. R. Thorpe, J. W. Baynes, Maillard reaction products in tissue proteins: new products and new perspectives, Amino. Acids., 2003, 25, 3-4, 275–281.

B. J. Ortwerth, M. Prabhakaram, R. H. Nagaraj, M. Linetsky, The relative UV sensitizer activity of purified advanced glycation endproducts, Photochem. Photobiol., 1997, 65, 4, 666–672.

G. T. Wondrak, E. L. Jacobson, M. K. Jacobson, Photosensitization of DNA damage by glycated proteins, Photochem. Photobiol. Sci., 2002, 1, 355–363.

H. Masaki, Y. Okano, H. Sakurai, Generation of active oxygen species from advanced glycation end-products (AGEs) during ultraviolet light A (UVA) irradiation and a possible mechanism for cell damaging, Biochim. Biophys. Acta, 1999, 1428, 1, 45–56.

Y. Okano, H. Masaki, H. Sakurai, Pentosidine in advanced glycation end-products (AGEs) during UVA irradiation generates active oxygen species and impairs human dermal fibroblasts, J. Dermatol. Sci., 2001, 27, Suppl 1, S11–S18.

T. Usui, S. Shizuuchi, H. Watanabe, F. Hayase, Cytotoxicity and oxidative stress induced by the glyceraldehyde-related Maillard reaction products for HL-60 cells, Biosci. Biotechnol. Biochem., 2004, 68, 2, 333–340.

R. Nagai, C. M. Hayashi, L. Xia, M. Takeya, S. Horiuchi, Identification in human atherosclerotic lesions of GA-pyridine, a novel structure derived from glycolaldehyde-modified proteins, J. Biol. Chem., 2002, 277, 50, 48905–48912.

F. J. Tessier, V. M. Monnier, L. M. Sayre, J. A. Kornfield, Triosidines: novel Maillard reaction products and cross-links from the reaction of triose sugars with lysine and arginine residues, Biochem. J., 2003, 369, Pt 3, 705–719.

A. B. Petersen, H. C. Wulf, R. Gniadecki, B. Gajkowska, Dihydroxyacetone, the active browning ingredient in sunless tanning lotions, induces DNA damage, cell-cycle block and apoptosis in cultured HaCaT keratinocytes, Mutat. Res., 2004, 560, 2, 173–186.

H. Inano, H. Ohba, B. Tamaoki, Photochemical inactivation of human placental estradiol 17 beta-dehydrogenase in the presence of 2,3-butanedione, J. Steroid Biochem., 1983, 19, 5, 1617–1622.

W. M. Nau, J. C. Scaiano, Qxygen quenching of excited aliphatic ketones and diketones, J. Phys. Chem., 1996, 100, 11360–11367.

A. Kornhauser, M. A. Pathak, Studies on the mechanism of the photosensitized dimerization of pyrimidines, Z. Naturforsch., Teil B, 1972, 27, 5, 550–553.

I. G. Gut, P. D. Wood, R. W. Redmond, Interaction of triplet photosensitizers with nucleotides and DNA in aqueous solution at room temperature, J. Am. Chem. Soc., 1996, 118, 2366–2373.

U. T. Brunk, A. Terman, Lipofuscin: mechanisms of age-related accumulation and influence on cell function, Free Radical Biol. Med., 2002, 33, 5, 611–619.

M. Boulton, M. Rozanowska, B. Rozanowski, T. Wess, The photoreactivity of ocular lipofuscin, Photochem. Photobiol. Sci., 2004, 3, 8, 759–764.

L. E. Lamb, J. D. Simon, A2E: a component of ocular lipofuscin, Photochem. Photobiol., 2004, 79, 2, 127–136.

N. Sitte, K. Merker, T. Grune, T. von Zglinicki, Lipofuscin accumulation in proliferating fibroblasts in vitro: an indicator of oxidative stress, Exp. Gerontol., 2001, 36, 3, 475–486.

N. Kollias, R. Gillies, M. Moran, I. E. Kochevar, R. R. Anderson, Endogenous skin fluorescence includes bands that may serve as quantitative markers of aging and photoaging, J. Invest. Dermatol, 1998, 111, 5, 776–780.

L. Brancaleon, G. Lin, N. Kollias, The in vivo fluorescence of tryptophan moieties in human skin increases with UV exposure and is a marker for epidermal proliferation, J. Invest. Dermatol., 1999, 113, 6, 977–982.

J. M. Menter, G. D. Williamson, K. Carlyle, C. L. Moore, I. Willis, Photochemistry of type I acid-soluble calf skin collagen: dependence on excitation wavelength, Photochem. Photobiol., 1995, 62, 3, 402–408.

S. Fu, M. X. Fu, J. W. Baynes, S. R. Thorpe, R. T. Dean, Presence of dopa and amino acid hydroperoxides in proteins modified with advanced glycation end products (AGEs): amino acid oxidation products as a possible source of oxidative stress induced by AGE proteins, Biochem. J., 1998, 330, Pt 1, 233–239.

M. J. Petersen, C. Hansen, S. Craig, Ultraviolet A. irradiation stimulates collagenase production in cultured human fibroblasts, J. Invest. Dermatol., 1992, 99, 4, 440–444.

G. Herrmann, M. Wlaschek, T. S. Lange, K. Prenzel, G. Goerz, K. Scharffetter-Kochanek, UVA irradiation stimulates the synthesis of various matrix-metalloproteinases (MMPs) in cultured human fibroblasts, Exp. Dermatol., 1993, 2, 2, 92–97.

G. J. Fisher, S. C. Datta, H. S. Talwar, Z. Q. Wang, J. Varani, S. Kang, J. J. Voorhees, Molecular basis of sun-induced premature skin ageing and retinoid antagonism, Nature, 1996, 379, 6563, 335–339.

J. Varani, D. Spearman, P. Perone, S. E. Fligiel, S. C. Datta, Z. Q. Wang, Y. Shao, S. Kang, G. J. Fisher, J. J. Voorhees, Inhibition of type I procollagen synthesis by damaged collagen in photoaged skin and by collagenase-degraded collagen in vitro, Am. J. Pathol., 2001, 158, 3, 931–942.

T. K. Hei, R. Persaud, H. Zhou, M. Suzuki, Genotoxicity in the eyes of bystander cells, Mutat. Res., 2004, 568, 1, 111–120.

B. Ponnaiya, G. Jenkins-Baker, A. Bigelow, S. Marino, C. R. Geard, Detection of chromosomal instability in alpha-irradiated and bystander human fibroblasts, Mutat. Res., 2004, 568, 1, 41–48.

H. Maier, G. Schauberger, K. Brunnhofer, H. Honigsmann, Change of ultraviolet absorbance of sunscreens by exposure to solar-simulated radiation, J. Invest. Dermatol., 2001, 117, 2, 256–262.

J. M. Allen, C. J. Gossett, S. K. Allen, Photochemical formation of singlet molecular oxygen in illuminated aqueous solutions of several commercially available sunscreen active ingredients, Chem. Res. Toxicol., 1996, 9, 3, 605–609.

N. Serpone, A. Salinaro, A. V. Emeline, S. Horikoshi, H. Hidaka, J. Zhao, An in vitro systematic spectroscopic examination of the photostabilities of a random set of commercial sunscreen lotions and their chemical UVB/UVA active agents, Photochem. Photobiol. Sci., 2002, 1, 12, 970–981.

G. T. Wondrak, M. K. Jacobson, E. L. Jacobson, Identification of quenchers of photoexcited states as novel agents for skin photoprotection, J. Pharmacol. Exp. Ther., 2005, 312, 2, 482–491.

A. Meves, S. N. Stock, A. Beyerle, M. R. Pittelkow, D. Peus, Vitamin C. derivative ascorbyl palmitate promotes ultraviolet-B-induced lipid peroxidation and cytotoxicity in keratinocytes, J. Invest. Dermatol., 2002, 119, 5, 1103–1108.

Y. P. Lu, Y. R. Lou, P. Yen, H. L. Newmark, O. I. Mirochnitchenko, M. Inouye, M. T. Huang, Enhanced skin carcinogenesis in transgenic mice with high expression of glutathione peroxidase or both glutathione peroxidase and superoxide dismutase, Cancer. Res., 1997, 57, 8, 1468–1474.

Y. Koyama, Structures and functions of carotenoids in photosynthetic systems, J. Photochem. Photobiol. B., 1991, 9, 265–280.

N. E. Holt, D. Zigmantas, L. Valkunas, X. P. Li, K. K. Niyogi, G. R. Fleming, Carotenoid cation formation and the regulation of photosynthetic light harvesting, Science, 2005, 307, 5708, 433–436.

S. Beutner, B. Bloedorn, T. Hoffmann, H. D. Martin, Synthetic singlet oxygen quenchers, Methods Enzymol., 2000, 319, 226–241.

C. Schweitzer, R. Schmidt, Physical mechanisms of generation and deactivation of singlet oxygen, Chem. Rev., 2003, 103, 1685–1757.

A. U. Khan, Y.-H. Mei, T. Wilson, A proposed function for spermine and spermidine: protection of replicating DNA against damage by singlet oxygen, Proc. Natl. Acad. Sci. USA, 1992, 89, 11426–11427.

Y. Lion, M. Delmelle, A van De Vorst, New method of detecting singlet oxygen production, Nature, 1976, 263, 442–443.

E. L. Clennan, L. J. Noe, T. Wen, E. Szneler, Solvent Effects on the Ability of Amines to Physically Quench Singlet Oxygen As Determined by Time-Resolved Infrared Emission Studies, J. Org. Chem., 1989, 54, 3581–3584.

Mascio P. Di, S. Kaiser, H. Sies, Lycopene as the most efficient biological carotenoid singlet oxygen quencher, Arch. Biochem. Biophys., 1989, 274, 2, 532–538.

A. A. Krasnovsky, Jr., M. A. Rodgers, M. G. Galpern, B. Rihter, M. E. Kenney, E. A. Lukjanetz, Quenching of singlet molecular oxygen by phthalocyanines and naphthalocyanines, Photochem. Photobiol., 1992, 55, 5, 691–696.

P. Douglas, J. D. Thomas, H. Strohm, C. Winscom, D. Clarke, M. S. Garley, Triplet energies and the singlet oxygen quenching mechanism for 7H-pyrazolo[5,1-c]-1,2,4-triazole azomethine dyes, Photochem. Photobiol. Sci., 2003, 2 5, 563–568.

G. Cosa, L. J. Martinez, J. C. Scaiano, Influence of solvent polarity and base concentration on the photochemistry of ketoprofen: independent singlet and triplet pathways, Phys. Chem. Chem. Phys., 1999, 1, 3533–3537.

M. C. Cuquerella, F. Bosca, M. A. Miranda, Photonucleophilic aromatic substitution of 6-fluoroquinolones in basic media: triplet quenching by hydroxide anion, J. Org. Chem., 2004, 69, 7256–7261.

E. F. Ullman, P. Singh, 3,3,4,4-Tetramethyl-1,2-diazetine-1,2-dioxide, a useful low-energy triplet quencher, J. Am. Chem. Soc., 1972, 94, 5077–5078.

F. Rizzuto, J. D. Spikes, Mechanisms involved in the chemical inhibition of the eosin-sensitized photooxidation of trypsin, Radiat. Environ. Biophys., 1975, 12, 3, 217–232.

P. D. Sima, J. R. Kanofsky, Cyanine dyes as protectors of K562 cells from photosensitized cell damage, Photochem. Photobiol., 2000, 71, 4, 413–421.

D. L. Bissett, S. Majeti, J. J. Fu, J. F. McBride, W. E. Wyder, Protective effect of topically applied conjugated hexadienes against ultraviolet radiation-induced chronic skin damage in the hairless mouse, Photodermatol. Photoimmunol. Photomed., 1990, 7, 2, 63–67.

H. J. Suh, H. W. Lee, J. Jung, Mycosporine glycine protects biological systems against photodynamic damage by quenching singlet oxygen with a high efficiency, Photochem. Photobiol., 2003, 78, 2, 109–113.

J. M. Gaullier, M. Bazin, A. Valla, M. Giraud, R. Santus, Amino acid-pyrrole N-conjugates; a new class of antioxidants II. Effectiveness of singlet oxygen quenching by luminescence measurements, J. Photochem. Photobiol. B., 1995, 30, 195–200.

H. Sies, W. Stahl, Nutritional Protection Against Skin Damage From Sunlight, Annu. Rev. Nutr., 2004, 24, 173–200.

W. H. Chan, H. J. Wu, Anti-apoptotic effects of curcumin on photosensitized human epidermal carcinoma A431 cells, J. Cell. Biochem., 2004, 92, 1, 200–212.

T. A. Dahl, W. R. Midden, P. E. Hartman, Some prevalent biomolecules as defenses against singlet oxygen damage, Photochem. Photobiol., 1988, 47, 3, 357–362.

M. Rougee, R. V. Bensasson, E. J. Land, R. Pariente, Deactivation of singlet molecular oxygen by thiols and related compounds, possible protectors against skin photosensitivity, Photochem. Photobiol., 1988, 47, 4, 485–489.

P. Morliere, G. Huppe, D. Averbeck, A. R. Young, R. Santus, L. Dubertret, In vitro photostability and photosensitizing properties of bergamot oil. Effects of a cinnamate sunscreen, J. Photochem. Photobiol. B., 1990, 7, 2–4, 199–208.

P. Morliere, O. Avice, T. S. Melo, L. Dubertret, M. Giraud, R. Santus, A study of the photochemical properties of some cinnamate sunscreens by steady state and laser flash photolysis, Photochem. Photobiol., 1982, 36, 4, 395–399.

E. Chatelain, B. Gabard, Photostabilization of butyl methoxydibenzoylmethane (Avobenzone) and ethylhexyl methoxycinnamate by bis-ethylhexyloxyphenol methoxyphenyl triazine (Tinosorb S.), a new UV broadband filter, Photochem. Photobiol., 2001, 74, 3, 401–406.