End-point immobilization of heparin on plasma-treated surface of electrospun polycarbonate-urethane vascular graft

Acta Biomaterialia - Tập 51 - Trang 138-147 - 2017
Xuefeng Qiu1,2,3, Benjamin Li-Ping Lee1, Xinghai Ning4, Niren Murthy1, Nianguo Dong2, Song Li1,3,5
1Department of Bioengineering, University of California Berkeley, CA 94720, USA
2Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People’s Republic of China
3Department of Bioengineering, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
4Department of Bioengineering, University of California, Berkeley, CA 94720, USA
5Department of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA

Tài liệu tham khảo

Kochanek, 2011, Deaths: final data for 2009, Natl. Vital State Rep., 60, 1 Faries, 2000, A comparative study of alternative conduits for lower extremity revascularization: all-autogenous conduit versus prosthetic grafts, J. Vasc. Surg., 32, 1080, 10.1067/mva.2000.111279 Isenberg, 2006, Small-diameter artificial arteries engineered in vitro, Circ. Res., 98, 25, 10.1161/01.RES.0000196867.12470.84 MacNeill, 2002, Toward a new blood vessel, Vasc. Med., 7, 241, 10.1191/1358863x02vm433ra Greisler, 1990, Interactions at the blood/material interface, Ann. Vasc. Surg., 4, 98, 10.1007/BF02042699 Hoenig, 2005, Tissue-engineered blood vessels: alternative to autologous grafts?, Arterioscler. Thromb. Vasc. Biol., 25, 1128, 10.1161/01.ATV.0000158996.03867.72 Dorigo, 2011, A multicenter comparison between autologous saphenous vein and heparin-bonded expanded polytetrafluoroethylene (ePTFE) graft in the treatment of critical limb ischemia in diabetics, J. Vasc. Surg., 54, 1332, 10.1016/j.jvs.2011.05.046 Weinberg, 1986, A blood vessel model constructed from collagen and cultured vascular cells, Science, 231, 397, 10.1126/science.2934816 Niklason, 1999, Functional arteries grown in vitro, Science, 284, 489, 10.1126/science.284.5413.489 Kaushal, 2001, Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo, Nat. Med., 7, 1035, 10.1038/nm0901-1035 L'Heureux, 2006, Human tissue-engineered blood vessels for adult arterial revascularization, Nat. Med., 12, 361, 10.1038/nm1364 Dahl, 2011, Readily available tissue-engineered vascular grafts, Sci. Transl. Med., 3, 10.1126/scitranslmed.3001426 Wu, 2012, Fast-degrading elastomer enables rapid remodeling of a cell-free synthetic graft into a neoartery, Nat. Med., 18, 1148, 10.1038/nm.2821 Hashi, 2007, Antithrombogenic property of bone marrow mesenchymal stem cells in nanofibrous vascular grafts, Proc. Natl. Acad. Sci., 104, 11915, 10.1073/pnas.0704581104 Stitzel, 2006, Controlled fabrication of a biological vascular substitute, Biomaterials, 27, 1088, 10.1016/j.biomaterials.2005.07.048 Ma, 2005, Potential of nanofiber matrix as tissue-engineering scaffolds, Tissue Eng., 11, 101, 10.1089/ten.2005.11.101 Liang, 2007, Functional electrospun nanofibrous scaffolds for biomedical applications, Adv. Drug Deliv. Rev., 59, 1392, 10.1016/j.addr.2007.04.021 Grasl, 2010, Electrospun polyurethane vascular grafts: in vitro mechanical behavior and endothelial adhesion molecule expression, J. Biomed. Mater. Res., Part A, 93A, 716 Bergmeister, 2012, Electrospun small-diameter polyurethane vascular grafts: ingrowth and differentiation of vascular-specific host cells, Artif. Organs, 36, 54, 10.1111/j.1525-1594.2011.01297.x Feng, 2013, Surface modification of polycarbonate urethane by covalent linkage of heparin with a PEG spacer, Trans. Tianjin Univ., 19, 58, 10.1007/s12209-013-1894-y Tiwari, 2002, New prostheses for use in bypass grafts with special emphasis on polyurethanes, Vascular, 10, 191 Pinchuk, 1994, A review of the biostability and carcinogenicity of polyurethanes in medicine and the new generation of 'biostable' polyurethanes, J. Biomater. Sci. Polym. Ed., 6, 225, 10.1163/156856294X00347 Szycher, 1991, In vivo testing of a biostable polyurethane, J. Biomater. Appl., 6, 110, 10.1177/088532829100600202 Zdrahala, 1996, Small caliber vascular grafts. Part II: polyurethanes revisited, J. Biomater. Appl., 11, 37, 10.1177/088532829601100102 Szelest-Lewandowska, 2007, Modified polycarbonate urethane: synthesis, properties and biological investigation in vitro, J. Biomed. Mater. Res. A, 82, 509, 10.1002/jbm.a.31357 Guo, 2007, Study on structure and performance of polycarbonate urethane synthesized via different copolymerization methods, J. Mater. Sci., 42, 5508, 10.1007/s10853-006-1024-5 Khan, 2005, Analysis and evaluation of a biomedical polycarbonate urethane tested in an in vitro study and an ovine arthroplasty model. Part I: materials selection and evaluation, Biomaterials, 26, 621, 10.1016/j.biomaterials.2004.02.065 Nakagawa, 1995, Clinical trial of new polyurethane vascular grafts for hemodialysis: compared with expanded polytetrafluoroethylene grafts, Artif. Organs, 19, 1227, 10.1111/j.1525-1594.1995.tb02290.x Walpoth, 1998, Improvement of patency rate in heparin-coated small synthetic vascular grafts, Circulation, 98 Jeschke, 1999, Polyurethane vascular prostheses decreases neointimal formation compared with expanded polytetrafluoroethylene, J. Vasc. Surg., 29, 168, 10.1016/S0741-5214(99)70358-7 Aldenhoff, 2001, Performance of a polyurethane vascular prosthesis carrying a dipyridamole (Persantin®) coating on its lumenal surface, J. Biomed. Mater. Res., 54, 224, 10.1002/1097-4636(200102)54:2<224::AID-JBM9>3.0.CO;2-E Tai, 2000, Compliance properties of conduits used in vascular reconstruction, Br. J. Surg., 87, 1516, 10.1046/j.1365-2168.2000.01566.x Salacinski, 2001, The mechanical behavior of vascular grafts: a review, J. Biomater. Appl., 15, 241, 10.1106/NA5T-J57A-JTDD-FD04 Hirsh, 2001, Guide to anticoagulant therapy: Heparin: a statement for healthcare professionals from the American Heart Association, Circulation, 103, 2994, 10.1161/01.CIR.103.24.2994 Capila, 2002, Heparin-protein interactions, Angew. Chem. Int. Ed. Engl., 41, 391, 10.1002/1521-3773(20020201)41:3<390::AID-ANIE390>3.0.CO;2-B Janairo, 2012, Heparin-modified small-diameter nanofibrous vascular grafts, IEEE Trans. Nanobiosci., 11, 22, 10.1109/TNB.2012.2188926 Alferiev, 2005, Surface heparinization of polyurethane via bromoalkylation of hard segment nitrogens, Biomacromolecules, 7, 317, 10.1021/bm0506694 Lu, 2012, Polycarbonate urethane films modified by heparin to enhance hemocompatibility and endothelialization, Polym. Int., 61, 1433, 10.1002/pi.4229 Ku, 2010, Human endothelial cell growth on mussel-inspired nanofiber scaffold for vascular tissue engineering, Biomaterials, 31, 9431, 10.1016/j.biomaterials.2010.08.071 Shin, 2012, Mussel-inspired immobilization of vascular endothelial growth factor (VEGF) for enhanced endothelialization of vascular grafts, Biomacromolecules, 13, 2020, 10.1021/bm300194b Tsai, 2011, Poly(dopamine) coating of scaffolds for articular cartilage tissue engineering, Acta Biomater., 7, 4187, 10.1016/j.actbio.2011.07.024 Tsai, 2014, Poly(dopamine) coating to biodegradable polymers for bone tissue engineering, J. Biomater. Appl., 28, 837, 10.1177/0885328213483842 Kawamoto, 1997, Endothelial cells on plasma-treated segmented polyurethane, J. Mater. Sci. – Mater. Med., 8, 551, 10.1023/A:1018598714996 Bae, 1999, Synthesis and characterization of heparinized polyurethanes using plasma glow discharge, Biomaterials, 20, 529, 10.1016/S0142-9612(98)00204-X Lee, 2012, Femtosecond laser ablation enhances cell infiltration into three-dimensional electrospun scaffolds, Acta Biomater., 8, 2648, 10.1016/j.actbio.2012.04.023 Hashi, 2010, Antithrombogenic modification of small-diameter microfibrous vascular grafts, Arterioscler. Thromb. Vasc. Biol., 30, 1621, 10.1161/ATVBAHA.110.208348 Zhu, 2004, Endothelium regeneration on luminal surface of polyurethane vascular scaffold modified with diamine and covalently grafted with gelatin, Biomaterials, 25, 423, 10.1016/S0142-9612(03)00549-0 Lee, 2013, Synovial stem cells and their responses to the porosity of microfibrous scaffold, Acta Biomater., 9, 7264, 10.1016/j.actbio.2013.03.009 Yu, 2012, The effect of stromal cell-derived factor-1α/heparin coating of biodegradable vascular grafts on the recruitment of both endothelial and smooth muscle progenitor cells for accelerated regeneration, Biomaterials, 33, 8062, 10.1016/j.biomaterials.2012.07.042 Lee, 2007, Mussel-inspired surface chemistry for multifunctional coatings, Science, 318, 426, 10.1126/science.1147241 Murugesan, 2008, Immobilization of heparin: approaches and applications, Curr. Top. Med. Chem., 8, 80, 10.2174/156802608783378891 Begovac, 2003, Improvements in GORE-TEX® vascular graft performance by Carmeda® bioactive surface heparin immobilization, Eur. J. Vasc. Endovasc. Surg., 25, 432, 10.1053/ejvs.2002.1909 Chuang, 2009, Regulation of polyurethane hemocompatibility and endothelialization by tethered hyaluronic acid oligosaccharides, Biomaterials, 30, 5341, 10.1016/j.biomaterials.2009.06.029 Noel, 2011, Quantification of primary amine groups available for subsequent biofunctionalization of polymer surfaces, Bioconjug. Chem., 22, 1690, 10.1021/bc200259c Wong, 2009, Physical properties of ion beam treated electrospun poly(vinyl alcohol) nanofibers, Eur. Polymer J., 45, 1349, 10.1016/j.eurpolymj.2009.02.002 Gibeop, 2013, Effect of plasma treatment on mechanical properties of jute fiber/poly (lactic acid) biodegradable composites, Adv. Compos. Mater, 22, 389, 10.1080/09243046.2013.843814 He, 2005, Fabrication and endothelialization of collagen-blended biodegradable polymer nanofibers: potential vascular graft for blood vessel tissue engineering, Tissue Eng., 11, 1574, 10.1089/ten.2005.11.1574 Riesenfeld, 1995, Surface modification with functionally active heparin, Med. Dev. Technol., 6, 24 Bernfield, 1999, Functions of cell surface heparan sulfate proteoglycans, Annu. Rev. Biochem., 68, 729, 10.1146/annurev.biochem.68.1.729 Powell, 2004, Interactions of heparin/heparan sulfate with proteins: appraisal of structural factors and experimental approaches, Glycobiology, 14, 17R, 10.1093/glycob/cwh051 Kurpinski, 2010, The effect of fiber alignment and heparin coating on cell infiltration into nanofibrous PLLA scaffolds, Biomaterials, 31, 3536, 10.1016/j.biomaterials.2010.01.062 Badylak, 2008, Macrophage phenotype as a determinant of biologic scaffold remodeling, Tissue Eng. Part A, 14, 1835, 10.1089/ten.tea.2007.0264