End-point immobilization of heparin on plasma-treated surface of electrospun polycarbonate-urethane vascular graft
Tài liệu tham khảo
Kochanek, 2011, Deaths: final data for 2009, Natl. Vital State Rep., 60, 1
Faries, 2000, A comparative study of alternative conduits for lower extremity revascularization: all-autogenous conduit versus prosthetic grafts, J. Vasc. Surg., 32, 1080, 10.1067/mva.2000.111279
Isenberg, 2006, Small-diameter artificial arteries engineered in vitro, Circ. Res., 98, 25, 10.1161/01.RES.0000196867.12470.84
MacNeill, 2002, Toward a new blood vessel, Vasc. Med., 7, 241, 10.1191/1358863x02vm433ra
Greisler, 1990, Interactions at the blood/material interface, Ann. Vasc. Surg., 4, 98, 10.1007/BF02042699
Hoenig, 2005, Tissue-engineered blood vessels: alternative to autologous grafts?, Arterioscler. Thromb. Vasc. Biol., 25, 1128, 10.1161/01.ATV.0000158996.03867.72
Dorigo, 2011, A multicenter comparison between autologous saphenous vein and heparin-bonded expanded polytetrafluoroethylene (ePTFE) graft in the treatment of critical limb ischemia in diabetics, J. Vasc. Surg., 54, 1332, 10.1016/j.jvs.2011.05.046
Weinberg, 1986, A blood vessel model constructed from collagen and cultured vascular cells, Science, 231, 397, 10.1126/science.2934816
Niklason, 1999, Functional arteries grown in vitro, Science, 284, 489, 10.1126/science.284.5413.489
Kaushal, 2001, Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo, Nat. Med., 7, 1035, 10.1038/nm0901-1035
L'Heureux, 2006, Human tissue-engineered blood vessels for adult arterial revascularization, Nat. Med., 12, 361, 10.1038/nm1364
Dahl, 2011, Readily available tissue-engineered vascular grafts, Sci. Transl. Med., 3, 10.1126/scitranslmed.3001426
Wu, 2012, Fast-degrading elastomer enables rapid remodeling of a cell-free synthetic graft into a neoartery, Nat. Med., 18, 1148, 10.1038/nm.2821
Hashi, 2007, Antithrombogenic property of bone marrow mesenchymal stem cells in nanofibrous vascular grafts, Proc. Natl. Acad. Sci., 104, 11915, 10.1073/pnas.0704581104
Stitzel, 2006, Controlled fabrication of a biological vascular substitute, Biomaterials, 27, 1088, 10.1016/j.biomaterials.2005.07.048
Ma, 2005, Potential of nanofiber matrix as tissue-engineering scaffolds, Tissue Eng., 11, 101, 10.1089/ten.2005.11.101
Liang, 2007, Functional electrospun nanofibrous scaffolds for biomedical applications, Adv. Drug Deliv. Rev., 59, 1392, 10.1016/j.addr.2007.04.021
Grasl, 2010, Electrospun polyurethane vascular grafts: in vitro mechanical behavior and endothelial adhesion molecule expression, J. Biomed. Mater. Res., Part A, 93A, 716
Bergmeister, 2012, Electrospun small-diameter polyurethane vascular grafts: ingrowth and differentiation of vascular-specific host cells, Artif. Organs, 36, 54, 10.1111/j.1525-1594.2011.01297.x
Feng, 2013, Surface modification of polycarbonate urethane by covalent linkage of heparin with a PEG spacer, Trans. Tianjin Univ., 19, 58, 10.1007/s12209-013-1894-y
Tiwari, 2002, New prostheses for use in bypass grafts with special emphasis on polyurethanes, Vascular, 10, 191
Pinchuk, 1994, A review of the biostability and carcinogenicity of polyurethanes in medicine and the new generation of 'biostable' polyurethanes, J. Biomater. Sci. Polym. Ed., 6, 225, 10.1163/156856294X00347
Szycher, 1991, In vivo testing of a biostable polyurethane, J. Biomater. Appl., 6, 110, 10.1177/088532829100600202
Zdrahala, 1996, Small caliber vascular grafts. Part II: polyurethanes revisited, J. Biomater. Appl., 11, 37, 10.1177/088532829601100102
Szelest-Lewandowska, 2007, Modified polycarbonate urethane: synthesis, properties and biological investigation in vitro, J. Biomed. Mater. Res. A, 82, 509, 10.1002/jbm.a.31357
Guo, 2007, Study on structure and performance of polycarbonate urethane synthesized via different copolymerization methods, J. Mater. Sci., 42, 5508, 10.1007/s10853-006-1024-5
Khan, 2005, Analysis and evaluation of a biomedical polycarbonate urethane tested in an in vitro study and an ovine arthroplasty model. Part I: materials selection and evaluation, Biomaterials, 26, 621, 10.1016/j.biomaterials.2004.02.065
Nakagawa, 1995, Clinical trial of new polyurethane vascular grafts for hemodialysis: compared with expanded polytetrafluoroethylene grafts, Artif. Organs, 19, 1227, 10.1111/j.1525-1594.1995.tb02290.x
Walpoth, 1998, Improvement of patency rate in heparin-coated small synthetic vascular grafts, Circulation, 98
Jeschke, 1999, Polyurethane vascular prostheses decreases neointimal formation compared with expanded polytetrafluoroethylene, J. Vasc. Surg., 29, 168, 10.1016/S0741-5214(99)70358-7
Aldenhoff, 2001, Performance of a polyurethane vascular prosthesis carrying a dipyridamole (Persantin®) coating on its lumenal surface, J. Biomed. Mater. Res., 54, 224, 10.1002/1097-4636(200102)54:2<224::AID-JBM9>3.0.CO;2-E
Tai, 2000, Compliance properties of conduits used in vascular reconstruction, Br. J. Surg., 87, 1516, 10.1046/j.1365-2168.2000.01566.x
Salacinski, 2001, The mechanical behavior of vascular grafts: a review, J. Biomater. Appl., 15, 241, 10.1106/NA5T-J57A-JTDD-FD04
Hirsh, 2001, Guide to anticoagulant therapy: Heparin: a statement for healthcare professionals from the American Heart Association, Circulation, 103, 2994, 10.1161/01.CIR.103.24.2994
Capila, 2002, Heparin-protein interactions, Angew. Chem. Int. Ed. Engl., 41, 391, 10.1002/1521-3773(20020201)41:3<390::AID-ANIE390>3.0.CO;2-B
Janairo, 2012, Heparin-modified small-diameter nanofibrous vascular grafts, IEEE Trans. Nanobiosci., 11, 22, 10.1109/TNB.2012.2188926
Alferiev, 2005, Surface heparinization of polyurethane via bromoalkylation of hard segment nitrogens, Biomacromolecules, 7, 317, 10.1021/bm0506694
Lu, 2012, Polycarbonate urethane films modified by heparin to enhance hemocompatibility and endothelialization, Polym. Int., 61, 1433, 10.1002/pi.4229
Ku, 2010, Human endothelial cell growth on mussel-inspired nanofiber scaffold for vascular tissue engineering, Biomaterials, 31, 9431, 10.1016/j.biomaterials.2010.08.071
Shin, 2012, Mussel-inspired immobilization of vascular endothelial growth factor (VEGF) for enhanced endothelialization of vascular grafts, Biomacromolecules, 13, 2020, 10.1021/bm300194b
Tsai, 2011, Poly(dopamine) coating of scaffolds for articular cartilage tissue engineering, Acta Biomater., 7, 4187, 10.1016/j.actbio.2011.07.024
Tsai, 2014, Poly(dopamine) coating to biodegradable polymers for bone tissue engineering, J. Biomater. Appl., 28, 837, 10.1177/0885328213483842
Kawamoto, 1997, Endothelial cells on plasma-treated segmented polyurethane, J. Mater. Sci. – Mater. Med., 8, 551, 10.1023/A:1018598714996
Bae, 1999, Synthesis and characterization of heparinized polyurethanes using plasma glow discharge, Biomaterials, 20, 529, 10.1016/S0142-9612(98)00204-X
Lee, 2012, Femtosecond laser ablation enhances cell infiltration into three-dimensional electrospun scaffolds, Acta Biomater., 8, 2648, 10.1016/j.actbio.2012.04.023
Hashi, 2010, Antithrombogenic modification of small-diameter microfibrous vascular grafts, Arterioscler. Thromb. Vasc. Biol., 30, 1621, 10.1161/ATVBAHA.110.208348
Zhu, 2004, Endothelium regeneration on luminal surface of polyurethane vascular scaffold modified with diamine and covalently grafted with gelatin, Biomaterials, 25, 423, 10.1016/S0142-9612(03)00549-0
Lee, 2013, Synovial stem cells and their responses to the porosity of microfibrous scaffold, Acta Biomater., 9, 7264, 10.1016/j.actbio.2013.03.009
Yu, 2012, The effect of stromal cell-derived factor-1α/heparin coating of biodegradable vascular grafts on the recruitment of both endothelial and smooth muscle progenitor cells for accelerated regeneration, Biomaterials, 33, 8062, 10.1016/j.biomaterials.2012.07.042
Lee, 2007, Mussel-inspired surface chemistry for multifunctional coatings, Science, 318, 426, 10.1126/science.1147241
Murugesan, 2008, Immobilization of heparin: approaches and applications, Curr. Top. Med. Chem., 8, 80, 10.2174/156802608783378891
Begovac, 2003, Improvements in GORE-TEX® vascular graft performance by Carmeda® bioactive surface heparin immobilization, Eur. J. Vasc. Endovasc. Surg., 25, 432, 10.1053/ejvs.2002.1909
Chuang, 2009, Regulation of polyurethane hemocompatibility and endothelialization by tethered hyaluronic acid oligosaccharides, Biomaterials, 30, 5341, 10.1016/j.biomaterials.2009.06.029
Noel, 2011, Quantification of primary amine groups available for subsequent biofunctionalization of polymer surfaces, Bioconjug. Chem., 22, 1690, 10.1021/bc200259c
Wong, 2009, Physical properties of ion beam treated electrospun poly(vinyl alcohol) nanofibers, Eur. Polymer J., 45, 1349, 10.1016/j.eurpolymj.2009.02.002
Gibeop, 2013, Effect of plasma treatment on mechanical properties of jute fiber/poly (lactic acid) biodegradable composites, Adv. Compos. Mater, 22, 389, 10.1080/09243046.2013.843814
He, 2005, Fabrication and endothelialization of collagen-blended biodegradable polymer nanofibers: potential vascular graft for blood vessel tissue engineering, Tissue Eng., 11, 1574, 10.1089/ten.2005.11.1574
Riesenfeld, 1995, Surface modification with functionally active heparin, Med. Dev. Technol., 6, 24
Bernfield, 1999, Functions of cell surface heparan sulfate proteoglycans, Annu. Rev. Biochem., 68, 729, 10.1146/annurev.biochem.68.1.729
Powell, 2004, Interactions of heparin/heparan sulfate with proteins: appraisal of structural factors and experimental approaches, Glycobiology, 14, 17R, 10.1093/glycob/cwh051
Kurpinski, 2010, The effect of fiber alignment and heparin coating on cell infiltration into nanofibrous PLLA scaffolds, Biomaterials, 31, 3536, 10.1016/j.biomaterials.2010.01.062
Badylak, 2008, Macrophage phenotype as a determinant of biologic scaffold remodeling, Tissue Eng. Part A, 14, 1835, 10.1089/ten.tea.2007.0264