Encoding nonlinear and unsteady aerodynamics of limit cycle oscillations using nonlinear sparse Bayesian learning

Journal of Sound and Vibration - Tập 569 - Trang 117816 - 2024
Rimple Sandhu1, Brandon Robinson1, Mohammad Khalil2, Chris L. Pettit3, Dominique Poirel4, Abhijit Sarkar1
1Department of Civil & Environmental Engineering, Carleton University, Ottawa, ON, Canada
2Quantitative Modeling & Analysis Department, Sandia National Laboratories, Livermore, CA, United States of America
3Department of Aerospace Engineering, United States Naval Academy, Annapolis, MD, United States of America
4Department of Mechanical & Aerospace Engineering, Royal Military College of Canada, Kingston, ON, Canada

Tài liệu tham khảo

Sandhu, 2020 Sandhu, 2021, Nonlinear sparse Bayesian learning for physics-based models, J. Comput. Phys., 426, 10.1016/j.jcp.2020.109728 Poirel, 2008, Self-sustained aeroelastic oscillations of a NACA0012 airfoil at low-to-moderate Reynolds numbers, J. Fluids Struct., 24, 700, 10.1016/j.jfluidstructs.2007.11.005 Rudmin, 2013, Detection of laminar flow separation and transition on a NACA-0012 airfoil using surface hot-films, J. Fluids Eng., 135, 10.1115/1.4024807 Poirel, 2010, Aerodynamics of laminar separation flutter at a transitional Reynolds number, J. Fluids Struct., 26, 1174, 10.1016/j.jfluidstructs.2010.06.005 Barnes, 2018, On the role of flow transition in laminar separation flutter, J. Fluids Struct., 77, 213, 10.1016/j.jfluidstructs.2017.12.009 Barnes, 2019, Stiffness effects on laminar separation flutter, J. Fluids Struct., 91, 10.1016/j.jfluidstructs.2019.102767 Poirel, 2011, Computational aeroelastic simulations of self-sustained pitch oscillations of a NACA0012 at transitional Reynolds numbers, J. Fluids Struct., 27, 1262, 10.1016/j.jfluidstructs.2011.05.009 Sandhu, 2014, Bayesian model selection for nonlinear aeroelastic systems using wind-tunnel data, Comput. Methods Appl. Mech. Engrg., 282, 161, 10.1016/j.cma.2014.06.013 Sandhu, 2016, Bayesian inference of nonlinear unsteady aerodynamics from aeroelastic limit cycle oscillations, J. Comput. Phys., 316, 534, 10.1016/j.jcp.2016.03.006 Bisaillon, 2022, Combined selection of the dynamic model and modeling error in nonlinear aeroelastic systems using Bayesian inference, J. Sound Vib., 522, 10.1016/j.jsv.2021.116418 Sandhu, 2017, Bayesian model selection using automatic relevance determination for nonlinear dynamical systems, Comput. Methods Appl. Mech. Engrg., 320, 237, 10.1016/j.cma.2017.01.042 Behmanesh, 2016, Accounting for environmental variability, modeling errors, and parameter estimation uncertainties in structural identification, J. Sound Vib., 374, 92, 10.1016/j.jsv.2016.03.022 Jain, 2005, Parameter estimation of unstable, limit cycling systems using adaptive feedback linearization: example of delta wing roll dynamics, J. Sound Vib., 287, 939, 10.1016/j.jsv.2004.12.013 Kim, 2013, Data-driven physical parameter estimation for lumped mass structures from a single point actuation test, J. Sound Vib., 332, 4390, 10.1016/j.jsv.2013.03.006 Safari, 2021, Direct optimisation based model selection and parameter estimation using time-domain data for identifying localised nonlinearities, J. Sound Vib., 501, 10.1016/j.jsv.2021.116056 Castello, 2023, ABC for model selection and parameter estimation of drill-string bit-rock interaction models and stochastic stability, J. Sound Vib., 547, 10.1016/j.jsv.2022.117537 Torkamani, 2013, Stochastic parameter estimation in nonlinear time-delayed vibratory systems with distributed delay, J. Sound Vib., 332, 3404, 10.1016/j.jsv.2013.01.032 Muto, 2008, Bayesian updating and model class selection for hysteretic structural models using stochastic simulation, J. Vib. Control, 14, 7, 10.1177/1077546307079400 Tipping, 2001, Sparse Bayesian learning and the relevance vector machine, J. Mach. Learn. Res., 1, 211 Faul, 2001, Analysis of sparse Bayesian learning, 383 Babacan, 2010, Bayesian compressive sensing using Laplace priors, IEEE Trans. Image Process., 19, 53, 10.1109/TIP.2009.2032894 Murphy, 2012 Wikle, 1998, Hierarchical Bayesian space-time models, Environ. Ecol. Stat., 5, 117, 10.1023/A:1009662704779 Huang, 2006, Hierarchical Bayesian methods for estimation of parameters in a longitudinal HIV dynamic system, Biometrics, 62, 413, 10.1111/j.1541-0420.2005.00447.x Li, 2018, A hierarchical Bayesian method for vibration-based time domain force reconstruction problems, J. Sound Vib., 421, 190, 10.1016/j.jsv.2018.01.052 Sedehi, 2020, Data-driven uncertainty quantification and propagation in structural dynamics through a hierarchical Bayesian framework, Probab. Eng. G Mech., 60 Jia, 2022, Hierarchical Bayesian modeling framework for model updating and robust predictions in structural dynamics using modal features, Mech. Syst. Signal Process., 170, 10.1016/j.ymssp.2021.108784 Huang, 2015, Hierarchical sparse Bayesian learning for structural health monitoring with incomplete modal data, Int. J. Uncertain. Quant., 5 Huang, 2017, Bayesian system identification based on hierarchical sparse Bayesian learning and Gibbs sampling with application to structural damage assessment, Comput. Methods Appl. Mech. Engrg., 318, 382, 10.1016/j.cma.2017.01.030 Li, 2021, Sparse Bayesian learning with model reduction for probabilistic structural damage detection with limited measurements, Eng. Struct., 247, 10.1016/j.engstruct.2021.113183 Li, 2023, Sparse Bayesian technique for load identification and full response reconstruction, J. Sound Vib., 10.1016/j.jsv.2023.117669 Papoulis, 2002 Bishop, 2006 Silverman, 1986 Scott, 2015 Dempster, 1977, Maximum likelihood from incomplete data via the EM algorithm, J. R. Stat. Soc. Ser. B, 39, 1 Moon, 1996, The expectation-maximization algorithm, IEEE Signal Process. Mag., 13, 47, 10.1109/79.543975 Beck, 2004, Model selection using response measurements: Bayesian probabilistic approach, J. Eng. Mech., 130, 192, 10.1061/(ASCE)0733-9399(2004)130:2(192) Cheung, 2010, Calculation of posterior probabilities for Bayesian model class assessment and averaging from posterior samples based on dynamic system data, Comput.-Aided Civ. Infrastruct. Eng., 25, 304, 10.1111/j.1467-8667.2009.00642.x Khalil, 2013, Probabilistic parameter estimation of a fluttering aeroelastic system in the transitional Reynolds number regime, J. Sound Vib., 332, 3670, 10.1016/j.jsv.2013.02.012 Bisaillon, 2015, Bayesian parameter estimation and model selection for strongly nonlinear dynamical systems, Nonlinear Dyn., 82, 1061, 10.1007/s11071-015-2217-8 Haario, 2006, DRAM: efficient adaptive MCMC, Stat. Comput., 16, 339, 10.1007/s11222-006-9438-0 Ching, 2007, Transitional Markov chain Monte Carlo method for Bayesian model updating, model class selection, and model averaging, J. Eng. Mech., 816, 10.1061/(ASCE)0733-9399(2007)133:7(816)