Encoding nonlinear and unsteady aerodynamics of limit cycle oscillations using nonlinear sparse Bayesian learning
Tài liệu tham khảo
Sandhu, 2020
Sandhu, 2021, Nonlinear sparse Bayesian learning for physics-based models, J. Comput. Phys., 426, 10.1016/j.jcp.2020.109728
Poirel, 2008, Self-sustained aeroelastic oscillations of a NACA0012 airfoil at low-to-moderate Reynolds numbers, J. Fluids Struct., 24, 700, 10.1016/j.jfluidstructs.2007.11.005
Rudmin, 2013, Detection of laminar flow separation and transition on a NACA-0012 airfoil using surface hot-films, J. Fluids Eng., 135, 10.1115/1.4024807
Poirel, 2010, Aerodynamics of laminar separation flutter at a transitional Reynolds number, J. Fluids Struct., 26, 1174, 10.1016/j.jfluidstructs.2010.06.005
Barnes, 2018, On the role of flow transition in laminar separation flutter, J. Fluids Struct., 77, 213, 10.1016/j.jfluidstructs.2017.12.009
Barnes, 2019, Stiffness effects on laminar separation flutter, J. Fluids Struct., 91, 10.1016/j.jfluidstructs.2019.102767
Poirel, 2011, Computational aeroelastic simulations of self-sustained pitch oscillations of a NACA0012 at transitional Reynolds numbers, J. Fluids Struct., 27, 1262, 10.1016/j.jfluidstructs.2011.05.009
Sandhu, 2014, Bayesian model selection for nonlinear aeroelastic systems using wind-tunnel data, Comput. Methods Appl. Mech. Engrg., 282, 161, 10.1016/j.cma.2014.06.013
Sandhu, 2016, Bayesian inference of nonlinear unsteady aerodynamics from aeroelastic limit cycle oscillations, J. Comput. Phys., 316, 534, 10.1016/j.jcp.2016.03.006
Bisaillon, 2022, Combined selection of the dynamic model and modeling error in nonlinear aeroelastic systems using Bayesian inference, J. Sound Vib., 522, 10.1016/j.jsv.2021.116418
Sandhu, 2017, Bayesian model selection using automatic relevance determination for nonlinear dynamical systems, Comput. Methods Appl. Mech. Engrg., 320, 237, 10.1016/j.cma.2017.01.042
Behmanesh, 2016, Accounting for environmental variability, modeling errors, and parameter estimation uncertainties in structural identification, J. Sound Vib., 374, 92, 10.1016/j.jsv.2016.03.022
Jain, 2005, Parameter estimation of unstable, limit cycling systems using adaptive feedback linearization: example of delta wing roll dynamics, J. Sound Vib., 287, 939, 10.1016/j.jsv.2004.12.013
Kim, 2013, Data-driven physical parameter estimation for lumped mass structures from a single point actuation test, J. Sound Vib., 332, 4390, 10.1016/j.jsv.2013.03.006
Safari, 2021, Direct optimisation based model selection and parameter estimation using time-domain data for identifying localised nonlinearities, J. Sound Vib., 501, 10.1016/j.jsv.2021.116056
Castello, 2023, ABC for model selection and parameter estimation of drill-string bit-rock interaction models and stochastic stability, J. Sound Vib., 547, 10.1016/j.jsv.2022.117537
Torkamani, 2013, Stochastic parameter estimation in nonlinear time-delayed vibratory systems with distributed delay, J. Sound Vib., 332, 3404, 10.1016/j.jsv.2013.01.032
Muto, 2008, Bayesian updating and model class selection for hysteretic structural models using stochastic simulation, J. Vib. Control, 14, 7, 10.1177/1077546307079400
Tipping, 2001, Sparse Bayesian learning and the relevance vector machine, J. Mach. Learn. Res., 1, 211
Faul, 2001, Analysis of sparse Bayesian learning, 383
Babacan, 2010, Bayesian compressive sensing using Laplace priors, IEEE Trans. Image Process., 19, 53, 10.1109/TIP.2009.2032894
Murphy, 2012
Wikle, 1998, Hierarchical Bayesian space-time models, Environ. Ecol. Stat., 5, 117, 10.1023/A:1009662704779
Huang, 2006, Hierarchical Bayesian methods for estimation of parameters in a longitudinal HIV dynamic system, Biometrics, 62, 413, 10.1111/j.1541-0420.2005.00447.x
Li, 2018, A hierarchical Bayesian method for vibration-based time domain force reconstruction problems, J. Sound Vib., 421, 190, 10.1016/j.jsv.2018.01.052
Sedehi, 2020, Data-driven uncertainty quantification and propagation in structural dynamics through a hierarchical Bayesian framework, Probab. Eng. G Mech., 60
Jia, 2022, Hierarchical Bayesian modeling framework for model updating and robust predictions in structural dynamics using modal features, Mech. Syst. Signal Process., 170, 10.1016/j.ymssp.2021.108784
Huang, 2015, Hierarchical sparse Bayesian learning for structural health monitoring with incomplete modal data, Int. J. Uncertain. Quant., 5
Huang, 2017, Bayesian system identification based on hierarchical sparse Bayesian learning and Gibbs sampling with application to structural damage assessment, Comput. Methods Appl. Mech. Engrg., 318, 382, 10.1016/j.cma.2017.01.030
Li, 2021, Sparse Bayesian learning with model reduction for probabilistic structural damage detection with limited measurements, Eng. Struct., 247, 10.1016/j.engstruct.2021.113183
Li, 2023, Sparse Bayesian technique for load identification and full response reconstruction, J. Sound Vib., 10.1016/j.jsv.2023.117669
Papoulis, 2002
Bishop, 2006
Silverman, 1986
Scott, 2015
Dempster, 1977, Maximum likelihood from incomplete data via the EM algorithm, J. R. Stat. Soc. Ser. B, 39, 1
Moon, 1996, The expectation-maximization algorithm, IEEE Signal Process. Mag., 13, 47, 10.1109/79.543975
Beck, 2004, Model selection using response measurements: Bayesian probabilistic approach, J. Eng. Mech., 130, 192, 10.1061/(ASCE)0733-9399(2004)130:2(192)
Cheung, 2010, Calculation of posterior probabilities for Bayesian model class assessment and averaging from posterior samples based on dynamic system data, Comput.-Aided Civ. Infrastruct. Eng., 25, 304, 10.1111/j.1467-8667.2009.00642.x
Khalil, 2013, Probabilistic parameter estimation of a fluttering aeroelastic system in the transitional Reynolds number regime, J. Sound Vib., 332, 3670, 10.1016/j.jsv.2013.02.012
Bisaillon, 2015, Bayesian parameter estimation and model selection for strongly nonlinear dynamical systems, Nonlinear Dyn., 82, 1061, 10.1007/s11071-015-2217-8
Haario, 2006, DRAM: efficient adaptive MCMC, Stat. Comput., 16, 339, 10.1007/s11222-006-9438-0
Ching, 2007, Transitional Markov chain Monte Carlo method for Bayesian model updating, model class selection, and model averaging, J. Eng. Mech., 816, 10.1061/(ASCE)0733-9399(2007)133:7(816)